满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次...

如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.
manfen5.com 满分网
(1)本题答案不唯一,符合条件均可. (2)可设出平移后的二次函数的解析式,然后将A、B的坐标代入抛物线的解析式中,即可求得l2的函数表达式. (3)本题可通过求三角形的面积来求K的坐标.由于三角形ABC的面积无法直接求出,因此可其转换成其他规则图形面积的和差来解.分别过A、B、C三点作x轴的垂线,因此△ABC的面积可用三个直角梯形的面积差来求出.可先根据直线AB求出其与y轴的交点G的坐标,设出K点坐标后即可表示出KG的长,然后可根据△KBG和△KAG的面积差表示出△KAB的面积,然后根据得出的△ABC的面积即可求出K的坐标. (4)应有三点:①以A为圆心,AB为半径作弧可交抛物线l2于一点;②以B为圆心,AB为半径坐标交抛物线于另一点;③作线段AB的垂直平分线可交抛物线于两点,因此共有4个符合条件的P点. 【解析】 (1)有多种答案,符合条件即可. 例如y=x2+1,y=x2+x,y=(x-1)2+2或y=x2-2x+3, y=(x+-1)2,y=(x-1-)2. (2)设抛物线l2的函数表达式为y=x2+bx+c, ∵点A(1,2),B(3,1)在抛物线l2上, ∴, 解得, ∴抛物线l2的函数表达式为y=x2-x+. (3)y=x2-x+=(x-)2+, ∴C点的坐标为(,). 过A,B,C三点分别作x轴的垂线,垂足分别为D,E,F, 则AD=2,CF=,BE=1,DE=2,DF=,EF=. ∴S△ABC=S梯形ADEB-S梯形ADFC-S梯形CFEB=(2+1)×2-(2+)×-(1+)×=. 延长BA交y轴于点G,设直线AB的函数表达式为y=mx+n, ∵点A(1,2),B(3,1)在直线AB上, ∴, 解得, ∴直线AB的函数表达式为y=-x+. ∴G点的坐标为(0,). 设K点坐标为(0,h),分两种情况: 若K点位于G点的上方,则KG=h-. 连接AK,BK. S△ABK=S△BKG-S△AKG=×3×(h-)-×1×(h-)=h-. ∵S△ABK=S△ABC=, ∴h-=, 解得h=. ∴K点的坐标为(0,). 若K点位于G点的下方,则KG=-h. 同理可得,h=. ∴K点的坐标为(0,). (4)作图痕迹如图所示. ①以A为圆心,AB为半径作弧可交抛物线l2于一点;②以B为圆心,AB为半径坐标交抛物线于另一点;③作线段AB的垂直平分线可交抛物线于两点,因此共有4个符合条件的P点.
复制答案
考点分析:
相关试题推荐
如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB.
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形?
manfen5.com 满分网
查看答案
如图所示,菱形ABCD的边长为6cm,∠DAB=60°,点M是边AD上一点,DM=2cm,点E、F分别从A、C同时出发,以1cm/s的速度分别沿边AB、CB向点B运动,EM、CD的延长线相交于G,GF交AD于O.设运动时间为x(s),△CGF的面积为y(cm2).
(1)当x为何值时,GD的长度是2cm?
(2)求y与x之间的函数关系式;
(3)是否存在某一时刻,使得线段GF把菱形ABCD分成的上、下两部分的面积之比为1:5?若存在,求出此时x的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,平面上一点P从点M(manfen5.com 满分网,1)出发,沿射线OM方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP为对角线的矩形OAPB的边长OA:OB=1:manfen5.com 满分网;过点O且垂直于射线OM的直线l与点P同时出发,且与点P沿相同的方向、以相同的速度运动.
(1)在点P运动过程中,试判断AB与y轴的位置关系,并说明理由.
(2)设点P与直线l都运动了t秒,求此时的矩形OAPB与直线l在运动过程中所扫过的区域的重叠部分的面积S.(用含t的代数式表示)

manfen5.com 满分网 查看答案
已知圆P的圆心在反比例函数y=manfen5.com 满分网(k>1)图象上,并与x轴相交于A、B两点.且始终与y轴相切于定点C(0,1).
(1)求经过A、B、C三点的二次函数图象的解析式;
(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.