满分5 > 初中数学试题 >

已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x...

已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.
(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.

manfen5.com 满分网
(1)根据第三个顶点C在x轴的正半轴上,利用勾股定理求出OC的长,进而求出C点坐标,应用待定系数法即可求出直线BC的解析式; (2)由于抛物线解析式关于y轴对称,可知一次项系数为0,利用待定系数法,设出一般式,将A(0,1),D(3,-2)代入解析式即可求出二次函数解析式;根据轴对称定义和角平分线的定义,利用特殊角判断出则符合条件的点P就是直线BC与抛物线y=-x2+1的交点. (3)根据轴对称定义和性质,作出C关于y轴的对称点C′,将求PM+CM的取值范围转化为求PM+C′M的取值范围. 【解析】 (1)∵A(0,1),B(0,3), ∴AB=2, ∵△ABC是等腰三角形,且点C在x轴的正半轴上, ∴AC=AB=2, ∴OC==. ∴C(,0).(2分) 设直线BC的解析式为y=kx+3, ∴k+3=0, ∴k=-. ∴直线BC的解析式为y=-x+3.(4分) (2)∵抛物线y=ax2+bx+c关于y轴对称, ∴b=0.(5分) 又抛物线y=ax2+bx+c经过A(0,1),D(3,-2)两点. ∴ 解得 ∴抛物线的解析式是y=-x2+1.(7分) 在Rt△AOC中,OA=1,AC=2,易得∠ACO=30°. 在Rt△BOC中,OB=3,OC=,易得∠BCO=60°. ∴CA是∠BCO的角平分线. ∴直线BC与x轴关于直线AC对称. 点P关于直线AC的对称点在x轴上,则符合条件的点P就是直线BC与抛物线y=-x2+1的交点.(8分) ∵点P在直线BC:y=-x+3上,故设点P的坐标是(x,-x+3). 又∵点P(x,-x+3)在抛物线y=-x2+1上, ∴-x+3=-x2+1. 解得x1=,x2=2. 故所求的点P的坐标是P1(,0),P2(2,-3).(10分) (3)要求PM+CM的取值范围,可先求PM+C′M的最小值. (I)当点P的坐标是OC=时,点P与点C重合, 故PM+CM=2CM. 显然CM的最小值就是点C到y轴的距离为, ∵点M是y轴上的动点, ∴PM+CM无最大值, ∴PM+CM≥2.(13分) (II)当点P的坐标是(2,-3)时,由点C关于y轴的对称点C′(-,0), 故只要求PM+MC'的最小值,显然线段PC'最短.易求得PC'=6. ∴PM+CM的最小值是6. 同理PM+CM没有最大值, ∴PM+CM的取值范围是PM+CM≥6. 综上所述,当点P的坐标是(,0)时,PM+CM≥2, 当点P的坐标是(2,-3)时,PM+CM≥6.(15分)
复制答案
考点分析:
相关试题推荐
已知:矩形纸片ABCD中,AB=26厘米,BC=18.5厘米,点E在AD上,且AE=6厘米,点P是AB边上一动点.按如下操作:
步骤一,折叠纸片,使点P与点E重合,展开纸片得折痕MN(如图1所示);
步骤二,过点P作PT⊥AB,交MN所在的直线于点Q,连接QE(如图2所示)
(1)无论点P在AB边上任何位置,都有PQ______QE(填“>”、“=”、“<”号);
(2)如图3所示,将纸片ABCD放在直角坐标系中,按上述步骤一、二进行操作:
①当点P在A点时,PT与MN交于点Q1,Q1点的坐标是(____________);
②当PA=6厘米时,PT与MN交于点Q2,Q2点的坐标是(____________);
③当PA=12厘米时,在图3中画出MN,PT(不要求写画法),并求出MN与PT的交点Q3的坐标;
(3)点P在运动过程,PT与MN形成一系列的交点Q1,Q2,Q3,…观察、猜想:众多的交点形成的图象是什么并直接写出该图象的函数表达式.③③
manfen5.com 满分网manfen5.com 满分网
查看答案
如图,抛物线y=manfen5.com 满分网x2+manfen5.com 满分网mx+n(其中m,n为常数且m>n)与y轴正半轴交于A点,它的对称轴交x轴正半轴于C点,抛物线的顶点为P,Rt△ABC的直角顶点B在对称轴上,当它绕点C按顺时针方向旋转90°得到Rt△A′B′C.
(1)写出点A,P,A′的坐标(用含m,n的式子表示);
(2)若直线BB'交y轴于E点,求证:线段B′E与AA′互相平分;
(3)若点A′在抛物线上且Rt△ABC的面积为1时,请求出抛物线的解析式并判断在抛物线的对称轴上是否存在点D,使△AA′D为等腰三角形?若存在,请直接写出所有符合条件的D点坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,一底角为60°的等腰梯形ABCD的下底AB在x轴的正半轴上,A为坐标原点,点B的坐标为(m,0),对角线BD平分∠ABC,一动点P在BD上以每秒一个单位长度的速度由B→D运动(点P不与B,D重合).过P作PE⊥BD交AB于点E,交线段BC(或CD)于点F.
(1)用含m的代数式表示线段AD的长是______
(2)当直线PE经过点C时,它的解析式为y=manfen5.com 满分网x-2manfen5.com 满分网,求m的值;
(3)在上述结论下,设动点P运动了t秒时,△AEF的面积为S,求S与t的函数关系式;并写出t为何值时,S取得最大值,最大值是多少?

manfen5.com 满分网 查看答案
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

manfen5.com 满分网 查看答案
如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.