如图,已知直线l:y=
及抛物线C:y=ax
2+bx+c(a≠0),且抛物线C图象上部分点的对应值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | -5 | 0 | 3 | 4 | 3 | 0 | -5 | … |
(1)求抛物线C对应的函数解析式;
(2)求直线l与抛物线C的交点A、B的坐标;
(3)若动点M在直线l上方的抛物线C上移动,求△ABM的边AB上的高h的最大值.
考点分析:
相关试题推荐
如图,矩形A′BC′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的,O′点在x轴的正半轴上,B点的坐标为(1,3).
(1)如果二次函数y=ax
2+bx+c(a≠0)的图象经过O,O′两点且图象顶点M的纵坐标为-1,求这个二次函数的解析式;
(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得△POM为直角三角形?若存在,请求出P点的坐标和△POM的面积;若不存在,请说明理由;
(3)求边C′O′所在直线的解析式.
查看答案
如图,已知抛物线y=ax
2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为
.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.
查看答案
已知反比例函数
的图象经过点P(2,2),函数y=ax+b的图象与直线y=-x平行,并且经过反比例函数图象上一点Q(1,m).
(1)求出点Q的坐标;
(2)函数y=ax
2+bx+
有最大值还是最小值?这个值是多少?
查看答案
如图,已知平行四边形ABCD的顶点A的坐标是(0,16),AB平行于x轴,B,C,D三点在抛物线y=
x
2上,DC交y轴于N点,一条直线OE与AB交于E点,与DC交于F点,如果E点的横坐标为a,四边形ADFE的面积为
.
(1)求出B,D两点的坐标;
(2)求a的值;
(3)作△ADN的内切圆⊙P,切点分别为M,K,H,求tan∠PFM的值.
查看答案
实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是______,______;
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______
(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x
2-(5c-3)x-c和三个点
,
,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.
查看答案