满分5 > 初中数学试题 >

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在...

manfen5.com 满分网如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
(1)根据抛物线的解析式,利用对称轴公式,可直接求出其对称轴. (2)令x=0,可求出C点坐标,由BC∥x轴可知B,C关于抛物线的对称轴对称,可求出B点坐标,根据AC=BC可求出A点坐标. (3)分三种情况讨论: ①以AB为腰且顶角为∠A,先求出AB的值,再利用等腰三角形的性质结合勾股定理求出P1N的长,即可求出P1的坐标; ②以AB为腰且顶角为角B,根据MN的长和MP2的长,求出P2的纵坐标,已知其横坐标,可得其坐标; ③以AB为底,顶角为角P时,依据Rt△P3CK∽Rt△BAQ即可求出OK和P3K的长,可得P3坐标. 【解析】 (1)抛物线的对称轴x=-=;(2分) (2)由抛物线y=ax2-5ax+4可知C(0,4),对称轴x=-=, ∴BC=5,B(5,4),又AC=BC=5,OC=4, 在Rt△AOC中,由勾股定理,得AO=3, ∴A(-3,0)B(5,4)C(0,4)(5分) 把点A坐标代入y=ax2-5ax+4中, 解得a=-,(6) ∴y=x2+x+4.(7分) (3)存在符合条件的点P共有3个.以下分三类情形探索. 设抛物线对称轴与x轴交于N,与CB交于M. 过点B作BQ⊥x轴于Q, 易得BQ=4,AQ=8,AN=5.5,BM=. ①以AB为腰且顶角为角A的△PAB有1个:△P1AB. ∴AB2=AQ2+BQ2=82+42=80(8分) 在Rt△ANP1中,P1N====, ∴P1(,-).(9分) ②以AB为腰且顶角为角B的△PAB有1个:△P2AB. 在Rt△BMP2中MP2== = =,(10分) ∴P2=(,).(11分) ③以AB为底,顶角为角P的△PAB有1个,即△P3AB. 画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C. 过点P3作P3K垂直y轴,垂足为K, ∵∠CP3K=∠ABQ,∠CKP3=∠AQB, ∴Rt△P3CK∽Rt△BAQ. ∴==. ∵P3K=2.5 ∴CK=5于是OK=1,(13分) ∴P3(2.5,-1).(14分)
复制答案
考点分析:
相关试题推荐
如图,抛物线y=manfen5.com 满分网x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73,manfen5.com 满分网≈2.24)

manfen5.com 满分网 查看答案
经过x轴上A(-1,0)、B(3,0)两点的抛物线y=ax2+bx+c交y轴于点C,设抛物线的顶点为D,若以DB为直径的⊙G经过点C,求解下列问题:
(1)用含a的代数式表示出C,D的坐标;
(2)求抛物线的解析式;
(3)如图,当a<0时,能否在抛物线上找到一点Q,使△BDQ为直角三角形?你能写出Q点的坐标吗?

manfen5.com 满分网 查看答案
如图,已知直线l:y=manfen5.com 满分网及抛物线C:y=ax2+bx+c(a≠0),且抛物线C图象上部分点的对应值如下表:
-2-1 2 3
 y-5 0 3 4 3 0-5
(1)求抛物线C对应的函数解析式;
(2)求直线l与抛物线C的交点A、B的坐标;
(3)若动点M在直线l上方的抛物线C上移动,求△ABM的边AB上的高h的最大值.

manfen5.com 满分网 查看答案
如图,矩形A′BC′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的,O′点在x轴的正半轴上,B点的坐标为(1,3).
(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点且图象顶点M的纵坐标为-1,求这个二次函数的解析式;
(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得△POM为直角三角形?若存在,请求出P点的坐标和△POM的面积;若不存在,请说明理由;
(3)求边C′O′所在直线的解析式.

manfen5.com 满分网 查看答案
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为manfen5.com 满分网.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.