满分5 > 初中数学试题 >

如图,抛物线y=x2+bx+c(b≤0)的图象与x轴交于A,B两点,与y轴交于点...

如图,抛物线y=x2+bx+c(b≤0)的图象与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(-2,0);直线x=1与抛物线交于点E,与x轴交于点F,且45°≤∠FAE≤60度.
(1)用b表示点E的坐标;
(2)求实数b的取值范围;
(3)请问△BCE的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由.

manfen5.com 满分网
(1)求E点的坐标关键是求出E的纵坐标.可将A点坐标代入抛物线的解析式中即可得出b,c的关系式.然后将E点的横坐标代入抛物线的解析式中即可得出E点的坐标. (2)根据(1)的E点坐标即可的EF的长,在直角三角形AEF中,不难求出AF的长,可根据AF的长和∠FAE度数的取值范围即可求出EF的取值范围,即b的取值范围. (3)由于三角形BCE的面积无法直接求出,因此可根据△BCE的面积=梯形OCEF的面积+△EFB的面积-△BOC的面积来得出关于△BCE的面积和b的函数关系式,根据函数的性质以及b的取值范围即可求出△BCE的面积的最大值. 【解析】 (1)∵抛物线y=x2+bx+c过A(-2,0), ∴c=2b-4 ∵点E在抛物线上, ∴y=1+b+c=1+2b-4+b=3b-3, ∴点E的坐标为(1,3b-3). (2)由(1)得EF=3-3b, ∵45°≤∠FAE≤60°,AF=3, ∴1-≤b≤0. (3)△BCE的面积有最大值, ∵y=x2+bx+c的对称轴为x=-,A(-2,0), ∴点B的坐标为(2-b,0), 由(1)得C(0,2b-4), 而S△BCE=S梯形OCEF+S△EFB-S△OCB=(OC+EF)•OF+EF•FB-OB•OC =[(4-2b)+(3-3b)]×1+(3-3b)(1-b)-(2-b)•(4-2b) =(b2-3b+2), ∵y=(b2-3b+2)的对称轴是b=,1-≤b≤0 ∴当b=1-时,S△BCE取最大值, 其最大值为[(1-)2-3(1-)+2]=.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且AB∥OC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.
(1)分析与计算:求正方形ODEF的边长;
(2)操作与求【解析】

①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______
A、逐渐增大B、逐渐减少C、先增大后减少D、先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.manfen5.com 满分网
查看答案
如图,已知正方形ABCD与正方形EFGH的边长分别是manfen5.com 满分网manfen5.com 满分网,它们的中心O1,O2都在直线l上,AD∥l,EG在直线l上,l与DC相交于点M,ME=7-2manfen5.com 满分网,当正方形EFGH沿直线l以每秒1个单位的速度向左平移时,正方形ABCD也绕O1以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变.
(1)在开始运动前,O1O2=______
(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE=______,O1O2=______
(3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式.

manfen5.com 满分网 查看答案
如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.
manfen5.com 满分网
查看答案
如图所示,在平面直角坐标系中,抛物线y=-x2+bx+c的图象与x轴交于A、B两点(A在B的左侧),与y轴交于C点.
(1)试判断b与c的积是正数还是负数,为什么?
(2)如果AB=4,且当抛物线y=-x2+bx+c的图象向左平移一个单位时,其顶点在y轴上.
①求原抛物线的表达式;
②设P是线段OB上的一个动点,过点P作PE⊥x轴交原抛物线于E点.问:是否存在P点,使直线BC把△PCE分成面积之比为3:1的两部分?若存在,求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图1,在△ABC中,∠A=90°,AB=4,AC=3.M是边AB上的动点(M不与A,B重合),MN∥BC交AC于点N,△AMN关于MN的对称图形是△PMN.设AM=x.
(1)用含x的式子表示△AMN的面积(不必写出过程);
(2)当x为何值时,点P恰好落在边BC上;
(3)在动点M的运动过程中,记△PMN与梯形MBCN重叠部分的面积为y,试求y关于x的函数关系式;并求x为何值时,重叠部分的面积最大,最大面积是多少?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.