满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c的图象交x轴于点A(x,0)和点B(2,0),与y...

已知抛物线y=ax2+bx+c的图象交x轴于点A(x,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.
(1)确定A、C、D三点的坐标;
(2)求过B、C、D三点的抛物线的解析式;
(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M、N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式;
(4)当manfen5.com 满分网<x<4时,(3)小题中平行四边形的面积是否有最大值?若有,请求出;若无,请说明理由.
(1)因为已知B点坐标和对称轴,所以可根据对称轴公式求出A点坐标;根据锐角三角函数的定义可求出C点坐标,根据x轴上的点关于y轴对称的特点可求出D点坐标. (2)因为B、D两点为抛物线与x轴的交点,所以可设出二次函数的交点式,再用待定系数法求出函数的解析式. (3)根据过点(0,3)且平行于x轴的直线与(2)中的抛物线相交于M.N,可求出M、N的坐标,及两点之间的距离,再根据抛物线的顶点坐标求出P点纵坐标y的取值范围,根据其取值范围即可求出S与y之间的函数关系式. (4)因为MN之间的距离为定值,故只要在<x<4范围内|y|最大,则平行四边形的面积最大.根据(3)中S与y之间的函数关系式即可求出S的最大值. 【解析】 (1)∵点A与点B关于直线x=-1对称,点B的坐标是(2,0) ∴点A的横坐标是=-1,x=-4, 故点A的坐标是(-4,0)(1分) ∵tan∠BAC=2即=2,可得OC=8 ∴C(0,8)(2分) ∵点A关于y轴的对称点为D ∴点D的坐标是(4,0)(3分) (2)设过三点的抛物线解析式为y=a(x-2)(x+4) 代入点C(0,8),解得a=-1(4分) ∴抛物线的解析式是y=-x2-2x+8;(5分) (3)∵抛物线y=-x2-2x+8与过点(0,3)平行于x轴的直线相交于M点和N点 ∴M(1,3),N(5,3),|MN|=4(6分) 而抛物线的顶点为(3,-1) 当y>3时 S=4(y-3)=4y-12 当-1≤y<3时 S=4(3-y)=-4y+12(8分) (4)以MN为一边,P(x,y)为顶点,且当<x<4的平行四边形面积最大,只要点P到MN的距离h最大 ∴当x=3,y=-1时,h=4 S=|MN|•h=4×4=16 ∴满足条件的平行四边形面积有最大值16.(10分)
复制答案
考点分析:
相关试题推荐
如图,抛物线y=x2+bx+c(b≤0)的图象与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(-2,0);直线x=1与抛物线交于点E,与x轴交于点F,且45°≤∠FAE≤60度.
(1)用b表示点E的坐标;
(2)求实数b的取值范围;
(3)请问△BCE的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且AB∥OC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.
(1)分析与计算:求正方形ODEF的边长;
(2)操作与求【解析】

①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______
A、逐渐增大B、逐渐减少C、先增大后减少D、先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.manfen5.com 满分网
查看答案
如图,已知正方形ABCD与正方形EFGH的边长分别是manfen5.com 满分网manfen5.com 满分网,它们的中心O1,O2都在直线l上,AD∥l,EG在直线l上,l与DC相交于点M,ME=7-2manfen5.com 满分网,当正方形EFGH沿直线l以每秒1个单位的速度向左平移时,正方形ABCD也绕O1以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变.
(1)在开始运动前,O1O2=______
(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE=______,O1O2=______
(3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式.

manfen5.com 满分网 查看答案
如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.
manfen5.com 满分网
查看答案
如图所示,在平面直角坐标系中,抛物线y=-x2+bx+c的图象与x轴交于A、B两点(A在B的左侧),与y轴交于C点.
(1)试判断b与c的积是正数还是负数,为什么?
(2)如果AB=4,且当抛物线y=-x2+bx+c的图象向左平移一个单位时,其顶点在y轴上.
①求原抛物线的表达式;
②设P是线段OB上的一个动点,过点P作PE⊥x轴交原抛物线于E点.问:是否存在P点,使直线BC把△PCE分成面积之比为3:1的两部分?若存在,求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.