满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=3...

如图1,在平面直角坐标系中,已知点A(0,4manfen5.com 满分网),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒manfen5.com 满分网个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求manfen5.com 满分网出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(1)先在直角三角形AOB中,根据∠ABO的度数和OA的长,求出OB的长,即可得出B点的坐标,然后用待定系数法即可求出直线AB的解析式. (2)求等边三角形的边长就是求出PM的长,可在直角三角形PMB中,用t表示出BP的长,然后根据∠ABO的度数,求出PM的长. 当M、O重合时,可在直角三角形AOP中,根据OA的长求出AP的长,然后根据P点的速度即可求出t的值. (3)本题要分情况进行讨论: ①当N在D点左侧且E在PM右侧或在PM上时,即当0≤t≤1时,重合部分是直角梯形EGNO. ②当N在D点左侧且E在PM左侧时,即当1<t<2时,此时重复部分为五边形,(如图3)其面积可用△PMN的面积-△PIG的面积-△OMF的面积来求得.(也可用梯形ONGE的面积-三角形FEI的面积来求). ③当N、D重合时,即t=2时,此时M、O也重合,此时重合部分为等腰梯形. 根据上述三种情况,可以得出三种不同的关于重合部分面积与t的函数关系式,进而可根据函数的性质和各自的自变量的取值范围求出对应的S的最大值. 【解析】 (1)由OA=4,∠ABO=30°,得到OB=12, ∴B(12,0),设直线AB解析式为y=kx+b, 把A和B坐标代入得:, 解得:, 则直线AB的解析式为:y=-x+4. (2)∵∠AOB=90°,∠ABO=30°, ∴AB=2OA=8, ∵AP=t, ∴BP=AB-AP=8t, ∵△PMN是等边三角形, ∴∠MPB=90°, ∵tan∠PBM=, ∴PM=(8-t)×=8-t. 如图1,过P分别作PQ⊥y轴于Q,PS⊥x轴于S, 可求得AQ=AP=t,PS=QO=4-t, ∴PM=(4-)÷=8-t, 当点M与点O重合时, ∵∠BAO=60°, ∴AO=2AP. ∴4=2t, ∴t=2. (3)①当0≤t≤1时,见图2. 设PN交EC于点G,重叠部分为直角梯形EONG,作GH⊥OB于H. ∵∠GNH=60°,, ∴HN=2, ∵PM=8-t, ∴BM=16-2t, ∵OB=12, ∴ON=(8-t)-(16-2t-12)=4+t, ∴OH=ON-HN=4+t-2=2+t=EG, ∴S=(2+t+4+t)×2=2t+6. ∵S随t的增大而增大, ∴当t=1时,Smax=8. ②当1<t<2时,见图3. 设PM交EC于点I,交EO于点F,PN交EC于点G,重叠部分为五边形OFIGN. 作GH⊥OB于H, ∵FO=4-2t, ∴EF=2-(4-2t)=2t-2, ∴EI=2t-2. ∴S=S梯形ONGE-S△FEI=2t+6-(2t-2)(2t-2)=-2t2+6t+4 由题意可得MO=4-2t,OF=(4-2t)×,PC=4-t,PI=4-t, 再计算S△FMO=(4-2t)2× S△PMN=(8-t)2,S△PIG=(4-t)2, ∴S=S△PMN-S△PIG-S△FMO=(8-t)2-(4-t)2-(4-2t)2× =-2t2+6t+4 ∵-2<0, ∴当时,S有最大值,Smax=. ③当t=2时,MP=MN=6,即N与D重合, 设PM交EC于点I,PD交EC于点G,重叠部 分为等腰梯形IMNG,见图4.S=×62-×22=8, 综上所述:当0≤t≤1时,S=2t+6; 当1<t<2时,S=-2t2+6t+4; 当t=2时,S=8. ∵, ∴S的最大值是.
复制答案
考点分析:
相关试题推荐
如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(manfen5.com 满分网,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处.
(1)若点P在一次函数y=2x-1的图象上,求点P的坐标;
(2)若点P在抛物线y=ax2图象上,并满足△PCB是等腰三角形,求该抛物线解析式;
(3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值.
manfen5.com 满分网
查看答案
如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
manfen5.com 满分网
查看答案
已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.
查看答案
在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设抛物线的对称轴为直线l,P是直线l上的一点,且△PAB的面积等于△AOB的面积,求点P的坐标.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c的图象交x轴于点A(x,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.
(1)确定A、C、D三点的坐标;
(2)求过B、C、D三点的抛物线的解析式;
(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M、N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式;
(4)当manfen5.com 满分网<x<4时,(3)小题中平行四边形的面积是否有最大值?若有,请求出;若无,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.