满分5 > 初中数学试题 >

设抛物线y=ax2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),...

设抛物线y=ax2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;
(3)在(2)的条件下,△BDP的外接圆半径等于______

manfen5.com 满分网
(1)根据抛物线的解析式可知C点坐标为(0,-2),即OC=2,由于∠ACB=90度,根据射影定理OC2=OA•AB,可求出AB的长,进而可求出B点的坐标,也就求出了m的值,然后将A、B的坐标代入抛物线中即可求出其解析式. (2)可先根据抛物线的解析式和直线AE的解析式求出E点和D点的坐标,经过求解不难得出∠FAB=∠DBO=45°,因此本题要分两种情况进行讨论:①∠DPB=∠ABE;②∠PDB=∠ABE.可根据对应的相似三角形得出的成比例线段求出OP的长,进而可求出P点的坐标. (3)以求△BP1D的外接圆半径为列进行说明:先作△BPD的外接圆,过P作直径PM,连接DM,那么不难得出△PMD和△FBD相似,可得出,可先求出DP,DF,BD的长,而PM是圆的直径,由此可求出△BPD的外接圆的半径. 【解析】 (1)令x=0,得y=-2, ∴C(0,-2), ∵∠ACB=90°,CO⊥AB, ∴△AOC∽△COB, ∴OA•OB=OC2 ∴OB=, ∴m=4, 将A(-1,0),B(4,0)代入y=ax2+bx-2, 得, ∴抛物线的解析式为y=x2-x-2. (2)D(1,n)代入y=x2-x-2,得n=-3, 由得 ∴E(6,7) 过E作EH⊥x轴于H,则H(6,0) ∴AH=EH=7 ∴∠EAH=45° 过D作DF⊥x轴于F,则F(1,0) ∴BF=DF=3 ∴∠DBF=45° ∴∠EAH=∠DBF=45° ∴∠DBH=135°, 90°<∠EBA<135° 则点P只能在点B的左侧,有以下两种情况: ①若△DBP1∽△EAB,则 ∴BP1=== ∴OP1=4-=, ∴P1(,0). ②若△DBP2∽△BAE,则 ∴BP2=== ∴OP2=-4= ∴P2(-,0). 综合①、②,得点P的坐标为:P1(,0)或P2(-,0). (3)或. 如图所示:先作△BPD的外接圆,过P作直径PM,连接DM, ∵∠PMD=∠PBD,∠DFP=∠PDM, ∴△PMD和△FBD相似, ∴, ∴PD===, DF=3, BD==3, ∴PM==, ∴△BPD的外接圆的半径=; 同理可求出当P点在x轴的负半轴上时,△BPD的外接圆的半径=.
复制答案
考点分析:
相关试题推荐
在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边作如图所示的正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF.
(1)猜想OD和DE之间的数量关系,并说明理由;
(2)设OD=t,求OB的长(用含t的代数式表示);
(3)若点B在E的右侧时,△BFE与△OFE能否相似?若能,请你求出此时经过O,A,B三点的抛物线解析式;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,已知点A(0,4manfen5.com 满分网),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒manfen5.com 满分网个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求manfen5.com 满分网出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
查看答案
如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(manfen5.com 满分网,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处.
(1)若点P在一次函数y=2x-1的图象上,求点P的坐标;
(2)若点P在抛物线y=ax2图象上,并满足△PCB是等腰三角形,求该抛物线解析式;
(3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值.
manfen5.com 满分网
查看答案
如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
manfen5.com 满分网
查看答案
已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.