设抛物线y=ax
2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;
(3)在(2)的条件下,△BDP的外接圆半径等于______
考点分析:
相关试题推荐
在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边作如图所示的正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF.
(1)猜想OD和DE之间的数量关系,并说明理由;
(2)设OD=t,求OB的长(用含t的代数式表示);
(3)若点B在E的右侧时,△BFE与△OFE能否相似?若能,请你求出此时经过O,A,B三点的抛物线解析式;若不能,请说明理由.
查看答案
如图1,在平面直角坐标系中,已知点A(0,4
),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒
个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求
出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
查看答案
如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(
,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处.
(1)若点P在一次函数y=2x-1的图象上,求点P的坐标;
(2)若点P在抛物线y=ax
2图象上,并满足△PCB是等腰三角形,求该抛物线解析式;
(3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值.
查看答案
如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
查看答案
已知抛物线y=x
2-2x+m与x轴交于点A(x
1,0)、B(x
2,0)(x
2>x
1),
(1)若点P(-1,2)在抛物线y=x
2-2x+m上,求m的值;
(2)若抛物线y=ax
2+bx+m与抛物线y=x
2-2x+m关于y轴对称,点Q
1(-2,q
1)、Q
2(-3,q
2)都在抛物线y=ax
2+bx+m上,则q
1、q
2的大小关系是______;
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x
2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.
查看答案