满分5 > 初中数学试题 >

已知抛物线y=x2-2x+a与直线y=x+1有两个公共点A(x1,y1),B(x...

已知抛物线y=x2-2x+a与直线y=x+1有两个公共点A(x1,y1),B(x2,y2),且x2>x1≥0.
(1)求抛物线的对称轴,并在所给坐标系中画出对称轴和直线y=x+1;
(2)试求a的取值范围;
(3)若AE⊥x,E为垂足,BF⊥x轴,F为垂足,试求S梯形ABFE的最大值.

manfen5.com 满分网
(1)根据抛物线的对称轴方程x=-即可求出对称轴的解析式. (2)由于抛物线与直线y=x+1有两个不同的交点,可联立两个函数的解析式,可得出一个关于x的一元二次方程,由于x1,x2均不为负数,因此两根的积大于等于0,由此可求出a的取值范围. (3)可先用A、B的横坐标和纵坐标表示出梯形的面积,然后根据直线y=x+1的解析式将各点的纵坐标替换掉,然后依据韦达定理和a的取值范围即可求出梯形的最大面积. 【解析】 (1)对称轴x=1, (2)方程组消去y, 得x2-3x+a-1=0. 由题意可知x1,x2是方程x2-3x+a-1=0的两个不相等的根, ∴x1+x2=3,x1•x2=a-1, ∵x2>x1≥0, ∴x1•x2≥0, 得a-1≥0,a≥1, 又△=13-4a>0, ∴a<, 故1≤a<. (3)∵点A,B在直线y=x+1上, ∴y1=x1+1,y2=x2+1, ∴S梯形ABFE=(AE+BF)×EF, =(y1+y2)(x2-x1)=(x1+x2+2)= ∵1≤a<, ∴a=1时,S梯形ABFE取最大值.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,抛物线y=mx2+2manfen5.com 满分网mx+n经过P(manfen5.com 满分网,5),A(0,2)两点.
(1)求此抛物线的解析式;
(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;
(3)在(2)的条件下,求到直线OB,OC,BC距离相等的点的坐标.

manfen5.com 满分网 查看答案
如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当manfen5.com 满分网时,y最大(小)值=manfen5.com 满分网.)manfen5.com 满分网
查看答案
如图,平行四边形ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.
(1)求证:△BEF∽△CEG;
(2)求用x表示S的函数表达式,并写出x的取值范围;
(3)当E运动到何处时,S有最大值,最大值为多少?

manfen5.com 满分网 查看答案
如图所示的直角坐标系中,若△ABC是等腰直角三角形,AB=AC=8manfen5.com 满分网,D为斜边BC的中点.点P由点A出发沿线段AB作匀速运动,P′是P关于AD的对称点;点Q由点D出发沿射线DC方向作匀速运动,且满足四边形QDPP′是平行四边形.设平行四边形QDPP′的面积为y,DQ=x.
(1)求出y关于x的函数解析式;
(2)求当y取最大值时,过点P,A,P′的二次函数解析式;
(3)能否在(2)中所求的二次函数图象上找一点E使△EPP′的面积为20?若存在,求出E点坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图1,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,S′表示矩形NFQC的面积.
(1)S与S′相等吗?请说明理由.
(2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?
(3)如图2,连接BE,当AE为何值时,△ABE是等腰三角形.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.