满分5 > 初中数学试题 >

如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0). (1)你一定...

如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0).
(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;
(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;
(3)请设法求出tan∠DAC的值.

manfen5.com 满分网
(1)把A点的坐标代入抛物线的解析式,就可以求出m的值,得到抛物线的解析式.在解析式中令y=0,解方程就可以求出与x轴的交点. (2)根据函数解析式就可求出抛物线的顶点坐标,利用待定系数法求出反比例函数的解析式. 经过C,B的直线解析式可以用待定系数法求得,进而求出E点的坐标.把E的坐标代入反比例函数解析式,就可以判断是否在反比例函数的图象上. (3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形,△AOC是等腰直角三角形,根据勾股定理就可以求出CD,AC的长度.Rt△ADC中中根据三角函数的定义就可以求出三角函数值. 【解析】 (1)因为A(3,0)在抛物线y=-x2+mx+3上, 则-9+3m+3=0,解得m=2. 所以抛物线的解析式为y=-x2+2x+3. 因为B点为抛物线与x轴的交点,求得B(-1,0), 因为C点为抛物线与y轴的交点,求得C(0,3). (2)∵y=-x2+2x+3=-(x-1)2+4, ∴顶点D(1,4), 画这个函数的草图. 由B,C点的坐标可求得直线BC的解析式为y=3x+3, ∵点E(-2,n)在y=3x+3上, ∴E(-2,-3). 可求得过D点的反比例函数的解析式为y=. 当x=-2时,y==-2≠-3. ∴点E不在过D点的反比例函数图象上. (3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形,且CD=. 连接AC,则△AOC为等腰直角三角形,且AC=3. 因为∠ACD=180°-45°-45°=90°, ∴Rt△ADC中,tan∠DAC=. 另【解析】 ∵Rt△CFD∽Rt△COA, ∴. ∵∠ACD=90°, ∴tan∠DAC=.
复制答案
考点分析:
相关试题推荐
(附加题)已知抛物线y=x2+kx+b经过点P(2,-3),Q(-1,0).
(1)求抛物线的解析式;
(2)设抛物线顶点为N,与y轴交点为A.求sin∠AON的值;
(3)设抛物线与x轴的另一个交点为M,求四边形OANM的面积.

manfen5.com 满分网 查看答案
如图,直线y=-manfen5.com 满分网x+2与x轴交于点C,与y轴交于点B,点A为y轴正半轴上的一点,⊙A经过点B,O,直线BC交⊙A于点D.
(1)求点D的坐标.
(2)以OC为直径作⊙O',连接AD,直线AD与⊙O'相切吗?为什么?
(3)过O,C,D三点作抛物线,在抛物线的对称轴上是否存在一点P,使线段PO与PD之差的值最大?若存在,请求出这个最大值和点P的坐标,若不存在,请说明理由.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图抛物线y=manfen5.com 满分网,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案
如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.
(1)当CD=1时,求点E的坐标;
(2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,O为坐标原点,平行四边形OABC的边OA在x轴上,∠B=60°,OA=6,OC=4,D是BC的中点,延长AD交OC的延长线于点E.
(1)画出△ECD关于边CD所在直线为对称轴的对称图形△E1CD,并求出点E1的坐标;
(2)求经过C、E1、B三点的抛物线的函数表达式;
(3)请探求经过C、E1、B三点的抛物线上是否存在点P,使以点P、B、C为顶点的三角形与△ECD相似?若存在这样的点P,请求出点P的坐标;若不存在这样的点P,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.