满分5 > 初中数学试题 >

已知:如图,抛物线y=-的图象与x轴分别交于A,B两点,与y轴交于C点,⊙M经过...

已知:如图,抛物线y=-manfen5.com 满分网的图象与x轴分别交于A,B两点,与y轴交于C点,⊙M经过原点O及点A、C,点D是劣弧manfen5.com 满分网上一动点(D点与A、O不重合).
(1)求抛物线的顶点E的坐标;
(2)求⊙M的面积;
(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.

manfen5.com 满分网
(1)已知了抛物线的解析式,用配方法和公式法求都可以. (2)由于∠AOC是直角,那么连接AC,则AC必过圆心M,也就是说AC就是圆M的直径,因此求出AC就可以得出圆M的半径长,根据抛物线的解析式可求出A,C两点的坐标,也就知道了OA,OC的长,可在直角三角形AOC中,用勾股定理求出AC,然后可根据圆的面积的计算公式求出圆M的面积. (3)应是D到OA中点时,GA与圆M相切,要证垂直就必须证AC⊥AG,此时D是弧OA的中点,根据OC,OA的长,不难得出∠ACO=60°,那么∠FCO=∠ACD=30°,有OC=,那么可求得OF=1,AF=OA-OF=2,首先三角形AFG是个等腰三角形,而∠CFO=90-30=60°,因此∠AFG=60°,三角形AFG就是个等边三角形,∠FAG=60°,因此∠CAG=60+30=90°,即可得出GA与圆M相切. 【解析】 (1)抛物线y=-x2- =-(x2+2x+1)+ =-(x+1)2+ ∴E的坐标为(-1,); (2)连AC; ∵⊙M过A,O,C,∠AOC=90°, ∴AC为⊙O的直径. 而|OA|=3,OC= ∴r=. ∴S⊙M=πr2=3π; (3)当点D运动到的中点时,直线GA与⊙M相切. 理由:在Rt△ACO中,|OA|=3,OC=, ∵tan∠ACO=. ∴∠ACO=60°,∠CAO=30°. ∵点D是的中点, ∴. ∴∠ACG=∠DCO=30°. ∴OF=OC•tan30°=1,∠CFO=60°. 在△GAF中,AF=2,FG=2,∠AFG=∠CFO=60°, ∴△AGF为等边三角形. ∴∠GAF=60°. ∴∠CAG=∠GAF+∠CAO=90°. 又AC为直径, ∴当D为的中点时,GA为⊙M的切线.
复制答案
考点分析:
相关试题推荐
已知:AC是⊙O的直径,点A、B、C、O在⊙O1上,OA=2.建立如图所示的直角坐标系.∠ACO=∠ACB=60度.
(1)求点B关于x轴对称的点D的坐标;
(2)求经过三点A、B、O的二次函数的解析式;
(3)该抛物线上是否存在点P,使四边形PABO为梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在如图所示的直角坐标系中,四边形OABC是边长为2的正方形,D为x轴上一点,连接BD交y轴于E点,且tan∠CBE=manfen5.com 满分网.抛物线y=ax2+bx+c(a≠0)过A、C、D三点,顶点为F.
(1)求D点坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)在直线DB上是否存在点P,使四边形PFDO为梯形?若存在,求出其坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知二次函数y=manfen5.com 满分网x2+bx+c的图象与x轴只有一个公共点M,与y轴的交点为A,过点A的直线y=x+c与x轴交于点N,与这个二次函数的图象交于点B.
(1)求点A、B的坐标(用含b、c的式子表示);
(2)当S△BMN=4S△AMN时,求二次函数的解析式;
(3)在(2)的条件下,设点P为x轴上的一个动点,那么是否存在这样的点P,使得以P、A、M为顶点的三角形为等腰三角形?若存在,请写出符合条件的所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知二次函数y=-manfen5.com 满分网x2+4x+c的图象经过坐标原点,并且与函数y=manfen5.com 满分网x的图象交于O、A两点.
(1)求c的值;
(2)求A点的坐标;
(3)若一条平行于y轴的直线与线段OA交于点F,与这个二次函数的图象交于点E,求线段EF的最大长度.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c过点A(1,manfen5.com 满分网),其顶点E的横坐标为2,此抛物线与x轴分别交于B(x1,0),C(x2,0)两点(x1<x2),且x12+x22=16.
(1)求此抛物线的解析式及顶点E的坐标;
(2)若D是y轴上一点,且△CDE为等腰三角形,求点D的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.