满分5 > 初中数学试题 >

在梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=BC=6cm,M...

在梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=BC=6cm,M、N为同时从A点出发的两个动点,点M沿A⇒D⇒C⇒B的方向运动,速度为2cm/秒;点N沿A⇒B的方向运动,速度为1cm/秒.当M、N其中一点到达B点时,点M、N运动停止.设点M、N的运动时间为x秒,以点A、M、N为顶点的三角形的面积为ycm2
(1)试求出当0<x<3时,y与x之间的函数关系式;
(2)试求出当4<x<7时,y与x之间的函数关系式;
(3)当3<x<4时,以A、M、N为顶点的三角形与以B、M、N为顶点的三角形是否有可能相似?若相似,试求出x的值;若不相似,试说明理由.

manfen5.com 满分网
(1)由题意可证∠A=60˚,进而由三角函数可求△AMN的面积即y=x2. (2)过点M作MG⊥AB,垂足为G.可证△MGB∽△CFB,即求GM=(7-x),所以△AMN的面积即y=x-x2. (3)当3<x<4时,以A,M,N为顶点的三角形与以B,M,N为顶点的三角形不可能相似. 当x=3时,动点M与点D重合时,动点N恰好与点E重合,此时∠MNA=90˚. 当3<x<4时,∠MNA必为钝角.则∠MNA≠∠MNB,而∠MNA=∠NMB+∠MBN,因此,△AMN与△BMN不可能相似. 【解析】 (1)如图①,过D作DE⊥AB,垂足为E;过C作CF⊥AB,垂足为F. ∴CD=EF=2. ∵AD=BC,DE=CF, ∴Rt△ADE≌Rt△BCF. ∴AE=BF=3.(1分) 在Rt△ADE中,AD=6,AE=3, ∴∠ADE=30˚,∠A=60˚ ∴在△AMN中,AN=x,高为2x•sin60°=x. ∴y=•x•x.即y=x2. (2)如图②,过点M作MG⊥AB,垂足为G. ∵MG∥CF, ∴△MGB∽△CFB. ∴GM:CF=BM:BC. ∵CF=DE=, ∴GM:3=(6+2+6-2x):6. ∴GM=(7-x). ∴y=(7-x). 即y=x-x2. (3)当3<x<4时,以A,M,N为顶点的三角形与以B,M,N为顶点的三角形不可能相似. 当x=3时,动点M与点D重合时,动点N恰好与点E重合,此时∠MNA=90˚. 当3<x<4时,∠MNA必为钝角.则∠MNA≠∠MNB,而∠MNA=∠NMB+∠MBN,因此,△AMN与△BMN不可能相似.
复制答案
考点分析:
相关试题推荐
已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,与x轴、y轴分别交于点M和N.
(1)设点P到x轴的距离为2,试求直线l的函数关系式;
(2)若线段MP与PN的长度之比为3:1,试求抛物线的函数关系式.
查看答案
在平面直角坐标系中,抛物线交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).
(1)求这个抛物线的解析式;
(2)在x轴上方平行于x轴的一条直线交抛物线于M,N两点,以MN为直径作圆与x轴相切,求此圆的直径;
(3)在抛物线的对称轴上是否存在一点P,使点P到B,C两点间的距离之差最大?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(人教版)已知:二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0)、B(x2,0)两点,交y轴正半轴于点C,且x12+x22=10.
(1)求此二次函数的解析式;
(2)是否存在过点D(0,-manfen5.com 满分网)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.