已知抛物线y=ax
2+bx+c的顶点坐标为(2,4).
(Ⅰ)试用含a的代数式分别表示b,c;
(Ⅱ)若直线y=kx+4(k≠0)与y轴及该抛物线的交点依次为D、E、F,且
,其中O为坐标原点,试用含a的代数式表示k;
(Ⅲ)在(Ⅱ)的条件下,若线段EF的长m满足3
≤m≤3
,试确定a的取值范围.
考点分析:
相关试题推荐
抛物线y=ax
2+bx+c(a≠0)过点A(1,-3),B(3,-3),C(-1,5),顶点为M点.
(1)求该抛物线的解析式;
(2)试判断抛物线上是否存在一点P,使∠POM=90度?若不存在,说明理由;若存在,求出P点的坐标;
(3)试判断抛物线上是否存在一点K,使∠OMK=90°?说明理由.
查看答案
在梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=BC=6cm,M、N为同时从A点出发的两个动点,点M沿A⇒D⇒C⇒B的方向运动,速度为2cm/秒;点N沿A⇒B的方向运动,速度为1cm/秒.当M、N其中一点到达B点时,点M、N运动停止.设点M、N的运动时间为x秒,以点A、M、N为顶点的三角形的面积为ycm
2.
(1)试求出当0<x<3时,y与x之间的函数关系式;
(2)试求出当4<x<7时,y与x之间的函数关系式;
(3)当3<x<4时,以A、M、N为顶点的三角形与以B、M、N为顶点的三角形是否有可能相似?若相似,试求出x的值;若不相似,试说明理由.
查看答案
已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?
查看答案
如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.
查看答案
已知抛物线y=ax
2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,与x轴、y轴分别交于点M和N.
(1)设点P到x轴的距离为2,试求直线l的函数关系式;
(2)若线段MP与PN的长度之比为3:1,试求抛物线的函数关系式.
查看答案