满分5 > 初中数学试题 >

如图,抛物线y=ax2-8ax+12a(a<0)与x轴交于A、B两点(点A在点B...

如图,抛物线y=ax2-8ax+12a(a<0)与x轴交于A、B两点(点A在点B的左侧),抛物线上另有一点C在第一象限,满足∠ACB为直角,且恰使△OCA∽△OBC.
(1)求线段OC的长;
(2)求该抛物线的函数关系式;
(3)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)令抛物线中y=0,可得出A、B的坐标,即可确定OA,OB的长.根据△OCA∽△OBC,可得出关于OC、OA、OB的比例关系式即可求出OC的长. (2)C是BP中点,因此C的横坐标是B点横坐标的一半,在(1)中已经求得了OC的长,因此不难得出C点的坐标.将C点坐标代入抛物线中即可求出抛物线的解析式. (3)应该有四个符合条件的点: ①以C为圆心,BC为半径作弧,交x轴于一点,这点符合P点要求,此时CP=BC,已知了B、C的坐标,即可求出P点坐标. ②以B为圆心,BC为半径作弧,交x轴于两点,这两点也符合P点要求,此时BC=BP,根据B、C的坐标,不难得出BC的长,将B点坐标向左或向右平移BC个单位即可得出P点坐标. ③作BC的垂直平分线,与x轴的交点也符合P点要求,此时CP=BP,可设出P点坐标,用坐标系两点间距离公式表示出BP和CP的长,即可求出P点坐标. 因此共有4个符合条件的P点. 【解析】 (1)由ax2-8ax+12a=0(a<0) 得x1=2,x2=6. 即:OA=2,OB=6. ∵△OCA∽△OBC, ∴OC2=OA•OB=2×6. ∴OC=2(-2舍去). ∴线段OC的长为2. (2)∵△OCA∽△OBC ∴ 设AC=k,则BC=k 由AC2+BC2=AB2得 k2+(k)2=(6-2)2 解得k=2(-2舍去) ∴AC=2,BC=2=OC 过点C作CD⊥AB于点D ∴OD=OB=3 ∴CD= ∴C的坐标为(3,) 将C点的坐标代入抛物线的解析式得=a(3-2)(3-6) ∴a=- ∴抛物线的函数关系式为: y=-x2+x-4. (3)①当P1与O重合时,△BCP1为等腰三角形 ∴P1的坐标为(0,0); ②当P2B=BC时(P2在B点的左侧),△BCP2为等腰三角形 ∴P2的坐标为(6-2,0); ③当P3为AB的中点时,P3B=P3C,△BCP3为等腰三角形 ∴P3的坐标为(4,0); ④当BP4=BC时(P4在B点的右侧),△BCP4为等腰三角形 ∴P4的坐标为(6+2,0); ∴在x轴上存在点P,使△BCP为等腰三角形,符合条件的点P的坐标为: (0,0),(6-2,0),(4,0),(6+2,0).
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,直线y=-manfen5.com 满分网x+1分别与x轴,y轴交于点A,点B.
(1)以AB为一边在第一象限内作等边△ABC及△ABC的外接圆⊙M(用尺规作图,不要求写作法,但要保留作图痕迹);
(2)若⊙M与x轴的另一个交点为点D,求A,B,C,D四点的坐标;
(3)求经过A,B,D三点的抛物线的解析式,并判断在抛物线上是否存在点P,使△ADP的面积等于△ADC的面积?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网
(1)请在横线上直接写出抛物线C2的解析式:______
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x-2与x轴相交于点A、B,与y轴相交于点C.
(1)求证:△AOC∽△COB;
(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC.
查看答案
如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=manfen5.com 满分网,∠BAO=30度.将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC.
(1)求直线BC的解析式;
(2)求经过B,C,A三点的抛物线y=ax2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由.

manfen5.com 满分网 查看答案
将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.manfen5.com 满分网
(1)如图(1),在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;
(2)如图(2),在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上的D′点,过D′作D′G∥A′O交E′F于T点,交OC′于G点,求证:TG=A′E′.
(3)在(2)的条件下,设T(x,y)①探求:y与x之间的函数关系式.②指出变量x的取值范围.
(4)如图(3),如果将矩形OABC变为平行四边形OA“B“C“,使O C“=10,O C“边上的高等于6,其它条件均不变,探求:这时T(x,y)的坐标y与x之间是否仍然满足(3)中所得的函数关系,若满足,请说明理由;若不满足,写出你认为正确的函数关系式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.