满分5 > 初中数学试题 >

如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y...

如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连接AC.请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据二次函数的对称性,已知对称轴的解析式以及B点的坐标,即可求出A的坐标 (2)已知了抛物线过A、B、C三点,而且三点的坐标都已得出,可用待定系数法来求函数的解析式. (3)本题要先根据抛物线的解析式求出顶点P的坐标,然后求出BP的长,进而分情况进行讨论: ①当∠PQB=∠CAB,即BQ:AB=PB:BC时,根据A、B的坐标可求出AB的长,根据B、C的坐标可求出BC的长,已经求出了PB的长度,那么可根据比例关系式得出BQ的长,即可得出Q的坐标. ②当∠QPB=∠CAB,即BQ:BC=BP:AB,可参照①的方法求出Q的坐标. ③当∠QBP=∠CAB,根据P点和A点的坐标即可得出∠CAO与∠QBP是不相等的,因此∠CAB与∠QBP也不会相等,因此此种情况是不成立的. 综上所述即可得出符合条件的Q的坐标. 【解析】 (1)∵直线y=-x+3与x轴相交于点B, ∴当y=0时,x=3, ∴点B的坐标为(3,0). 又∵抛物线过x轴上的A,B两点,且对称轴为x=2, 根据抛物线的对称性, ∴点A的坐标为(1,0). (2)∵y=-x+3过点C,易知C(0,3), ∴c=3. 又∵抛物线y=ax2+bx+c过点A(1,0),B(3,0), ∴ 解,得 ∴y=x2-4x+3. (3)连接PB,由y=x2-4x+3=(x-2)2-1,得P(2,-1), 设抛物线的对称轴交x轴于点M, ∵在Rt△PBM中,PM=MB=1, ∴∠PBM=45°,PB=. 由点B(3,0),C(0,3)易得OB=OC=3,在等腰直角三角形OBC中,∠ABC=45°, 由勾股定理,得BC=3. 假设在x轴上存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似. ①当,∠PBQ=∠ABC=45°时,△PBQ∽△ABC. 即, ∴BQ=3, 又∵BO=3, ∴点Q与点O重合, ∴Q1的坐标是(0,0). ②当,∠QBP=∠ABC=45°时,△QBP∽△ABC. 即, ∴QB=. ∵OB=3, ∴OQ=OB-QB=3-, ∴Q2的坐标是(,0). ∵∠PBx=180°-45°=135°,∠BAC<135°, ∴∠PBx≠∠BAC. ∴点Q不可能在B点右侧的x轴上 综上所述,在x轴上存在两点Q1(0,0),Q2(,0), 能使得以点P,B,Q为顶点的三角形与△ABC相似.
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).
(1)写出△PBQ的面积S(cm2)与时间t(s)之间的函数表达式,当t为何值时,S有最大值,最大值是多少?
(2)当t为何值时,△PBQ为等腰三角形?
(3)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由.

manfen5.com 满分网 查看答案
如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,抛物线y=-x2+2mx+m+2的图象与x轴交于A(-1,0),B两点,在x轴上方且平行于x轴的直线EF与抛物线交于E,F两点,E在F的左侧,过E,F分别作x轴的垂线,垂足是M,N.
(1)求m的值及抛物线的顶点坐标;
(2)设BN=t,矩形EMNF的周长为C,求C与t的函数表达式;
(3)当矩形EMNF的周长为10时,将△ENM沿EN翻折,点M落在坐标平面内的点记为M',试判断点M'是否在抛物线上?并说明理由.

manfen5.com 满分网 查看答案
如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线y=-manfen5.com 满分网x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-1,过点C(0,3)的直线y=-manfen5.com 满分网x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1.
(1)确定b,c的值;
(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);
(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.