九(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.
小组讨论后,同学们做了以下三种试验:
请根据以上图案回答下列问题:
(1)在图案1中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,当AB为1m,长方形框架ABCD的面积是______m
2;
(2)在图案2中,如果铝合金材料总长度为6m,设AB为xm,长方形框架ABCD的面积为S=______(用含x的代数式表示);当AB=______m时,长方形框架ABCD的面积S最大;在图案3中,如果铝合金材料总长度为lm,设AB为xm,当AB=______m时,长方形框架ABCD的面积S最大.
(3)经过这三种情形的试验,他们发现对于图案4这样的情形也存在着一定的规律.探索:如图案4如果铝合金材料总长度为lm共有n条竖档时,那么当竖档AB多少时,长方形框架ABCD的面积最大.
考点分析:
相关试题推荐
如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).
(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?
查看答案
在平面直角坐标系中,已知A(0,3),B(4,0),设P、Q分别是线段AB、OB上的动点,它们同时出发,点P以每秒3个单位的速度从点A向点B运动,点Q以每秒1个单位的速度从点B向点O运动.设运动时间为t(秒).
(1)用含t的代数式表示点P的坐标;
(2)当t为何值时,△OPQ为直角三角形?
(3)在什么条件下,以Rt△OPQ的三个顶点能确定一条对称轴平行于y轴的抛物线?选择一种情况,求出所确定的抛物线的解析式.
查看答案
在平面直角坐标系中有一点A(
),过A点作x轴的平行线l,在l上有一不与A点重合的点B,连接OA,OB.将OA绕O点顺时针方向旋转α°到OA
1,OB绕O点逆时针方向旋转α°到OB
1.
(1)当B点在A点右侧时,如图(1).如果∠AOB=20°,∠A
1OB=110°,α=______.这时直线AB
1与直线A
1B有何特殊的位置关系证明你的结论.
(2)如果B点的横坐标为t,△OAB的面积为S,直接写出S关于t的函数关式,并指出t的取值范围.
(3)当α=60时,直线B
1A交y轴于D,求以D为顶点且经过A点的抛物线的解析式.
查看答案
已知:如图,抛物线y=ax
2+bx+c的顶点C在以D(-2,-2)为圆心,4为半径的圆上,且经过⊙D与x轴的两个交点A、B,连接AC、BC、OC.
(1)求点C的坐标;
(2)求图中阴影部分的面积;
(3)在抛物线上是否存在点P,使DP所在直线平分线段OC?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.
(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.
①求证:△CQD∽△APD;
②连接PQ,设AP=x,求面积S
△PCQ关于x的函数关系式;
(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.
①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;
②连接MN,求面积S
△MCN关于t的函数关系式;
(3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S
△PCQ等于平移所得S
△MCN的最大值?说明你的理由.
查看答案