满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CF...

如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(6,0)(如图1).
(1)当α=60°时,△CBD的形状是______
(2)当AH=HC时,求直线FC的解析式;
(3)当α=90°时,(如图2).请探究:经过点D,且以点B为顶点的抛物线,是否经过矩形CFED的对称中心M,并说明理由.

manfen5.com 满分网
(1)可利用旋转前后对应线段相等得出BC=CD,∠BCD=60°,所以△CBD为等边三角形; (2)可利用勾股定理求出H点坐标,从而求出FC的解析式; (3)因为已知抛物线顶点的坐标,故而设y=a(x-6)2+4,把点D坐标代入可求出a值.然后可求出函数解析式,然后再把M点坐标代入检验. 【解析】 (1)∵图形旋转后BC=CD,∠BCD=∠α=60° ∴△BCD是等边三角形; (2)设AH=x,则HB=AB-AH=6-x, 依题意可得:AB=OC=6,BC=OA=4, 在Rt△BHC中,HC2=BC2+HB2, 即x2-(6-x)2=16, 解得x=. ∴H(,4). 设y=kx+b,把H(,4),C(6,0)代入y=kx+b, 得 解得 ∴y=-x+. (3)抛物线顶点为B(6,4), 设y=a(x-6)2+4, 把D(10,0)代入得:a=-. ∴y=-(x-6)2+4(或y=-x2+3x-5). 依题可得,点M坐标为(8,3), 把x=8代入y=-(x-6)2+4,得y=3. ∴抛物线经过矩形CFED的对称中心M.
复制答案
考点分析:
相关试题推荐
如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M.
(1)求点B1的坐标与线段B1C的长;
(2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA3B3C3.请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法.
manfen5.com 满分网manfen5.com 满分网
查看答案
如图,在⊙M中,manfen5.com 满分网所对的圆心角为120°,已知圆的半径为2cm,并建立如图所示的直角坐标系.
(1)求圆心M的坐标;
(2)求经过A,B,C三点的抛物线的解析式;
(3)点D是弦AB所对的优弧上一动点,求四边形ACBD的最大面积;
(4)在(2)中的抛物线上是否存在一点P,使△PAB和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点E与点B重合,EF落在BC上,如图1所示)在线段BC上沿BC方向以每秒1个单位的速度平移,DE、DF分别与AB相交于点M、N.当点F运动到点C时,△DEF终止运动,此时点D恰好落在AB上,设△DEF平移的时间为x.
(1)求△DEF的边长;
(2)求M点、N点在BA上的移动速度;
(3)在△DEF开始运动的同时,如果点P以每秒2个单位的速度从D点出发沿DE⇒EF运动,最终运动到F点.若设△PMN的面积为y,求y与x的函数关系式,写出它的定义域;并说明当P点在何处时,△PMN的面积最大?
manfen5.com 满分网
查看答案
一条抛物线y=manfen5.com 满分网x2+mx+n经过点(0,manfen5.com 满分网)与(4,manfen5.com 满分网).
(1)求这条抛物线的解析式,并写出它的顶点坐标;
(2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标.

manfen5.com 满分网 查看答案
九(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.
小组讨论后,同学们做了以下三种试验:
manfen5.com 满分网manfen5.com 满分网
请根据以上图案回答下列问题:
(1)在图案1中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,当AB为1m,长方形框架ABCD的面积是______m2
(2)在图案2中,如果铝合金材料总长度为6m,设AB为xm,长方形框架ABCD的面积为S=______(用含x的代数式表示);当AB=______m时,长方形框架ABCD的面积S最大;在图案3中,如果铝合金材料总长度为lm,设AB为xm,当AB=______m时,长方形框架ABCD的面积S最大.
(3)经过这三种情形的试验,他们发现对于图案4这样的情形也存在着一定的规律.探索:如图案4如果铝合金材料总长度为lm共有n条竖档时,那么当竖档AB多少时,长方形框架ABCD的面积最大.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.