已知如图,矩形OABC的长OA=
,宽OC=1,将△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P点坐标为______
考点分析:
相关试题推荐
如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP⊥BC,交AC于点P,连接MP,当两动点运动了t秒时.
(1)P点的坐标为______(用含t的代数式表示);
(2)记△MPA的面积为S,求S与t的函数关系式(0<t<4);
(3)当t=______秒时,S有最大值,最大值是______;
(4)若点Q在y轴上,当S有最大值且△QAN为等腰三角形时,求直线AQ的解析式.
查看答案
已知二次函数图象经过两点A(1,0)、B(5,0),且函数有最小值-1.直线y=m(x-3)与二次函数图象交于C、D两点.
(1)求二次函数的解析式;
(2)证明:以CD为直径的圆与直线y=-2相切;
(3)设以CD为直径的圆与直线y=-2的切点为E,过点C、D分别作直线y=-2的垂线,垂足为F、G、S
1、S
2、S分别表示△CEF、△DEG、△CDE的面积.证明:S=S
1+S
2.
查看答案
如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(6,0)(如图1).
(1)当α=60°时,△CBD的形状是______;
(2)当AH=HC时,求直线FC的解析式;
(3)当α=90°时,(如图2).请探究:经过点D,且以点B为顶点的抛物线,是否经过矩形CFED的对称中心M,并说明理由.
查看答案
如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA
1B
1C
1,BC,A
1B
1相交于点M.
(1)求点B
1的坐标与线段B
1C的长;
(2)将图1中的矩形OA
1B
1C
1沿y轴向上平移,如图2,矩形PA
2B
2C
2是平移过程中的某一位置,BC,A
2B
2相交于点M
1,点P运动到C点停止.设点P运动的距离为x,矩形PA
2B
2C
2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA
3B
3C
3.请你思考如何通过图形变换使矩形PA
3B
3C
3与原矩形OABC重合,请简述你的做法.
查看答案
如图,在⊙M中,
所对的圆心角为120°,已知圆的半径为2cm,并建立如图所示的直角坐标系.
(1)求圆心M的坐标;
(2)求经过A,B,C三点的抛物线的解析式;
(3)点D是弦AB所对的优弧上一动点,求四边形ACBD的最大面积;
(4)在(2)中的抛物线上是否存在一点P,使△PAB和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案