满分5 > 初中数学试题 >

已知抛物线y=x2+mx-2m2(m≠0). (1)求证:该抛物线与x轴有两个不...

已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.
(1)要证抛物线与x轴有两个不同的交点,实际上就是一元二次方程x2+mx-2m2=0有两个不相等的实数根,只要证出b2-4ac>0即可; (2)根据题意易知点A、B的坐标必须满足的方程,根据根与系数的关系,可得AB与PB的关于m的关系式,根据AB的位置不同,分两种情况讨论,并解出m的值. (1)证明:△=m2-4×1×(-2m2)=9m2, ∵m≠0,∴△>0, ∴该抛物线与x轴有两个不同的交点; (2)【解析】 由题意易知:点A、B的坐标满足方程:x2+mx-2m2=n,即x2+mx-(2m2+n)=0 由于方程有两个不相等的实数根, 因此△>0,即m2-4×1×[-(2m2+n)]>0⇒9m2+4n>0,① 由求根公式可知两根为:,, ∴, , 分两种情况讨论: 第一种:如图1,点A在点P左边,点B在点P的右边 ∵AP=2PB ∴AB=3PB ∴.② ∴m>0.③ 由②式可解得n=0.④ 第二种:如图2,点A、B都在点P左边 ∵AP=2PB ∴AB=PB ∴.⑤ ∴m>0.⑥ 由⑤式可解得n=-m2.⑦ 综合①③④⑥⑦可知,满足条件的点P存在,此时m、n应满足条件:m>0,n=0或n=-m2.
复制答案
考点分析:
相关试题推荐
如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1,A2B2,A3B3,A4B4,A5B5之间的距离均为15m,B1B5∥A1A5,将抛物线放在图(2)所示的直角坐标系中
(1)直接写出图(2)中点B1的坐标为______,B3的坐标为______,B5的坐标为______
(2)求图(2)中抛物线的函数表达式是______
(3)求图(1)中支柱A2B2的长度为______,A4B4的长度为______manfen5.com 满分网
查看答案
如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且x1+x2=4,manfen5.com 满分网
(1)分别求出A,B两点的坐标;
(2)求此抛物线的函数解析式;
(3)设此抛物线与y轴的交点为C,过manfen5.com 满分网作直线l与抛物线交于另一点D(点D在x轴上方),连接AC,CB,BD,DA,当四边形ACBD的面积为4时,求点D的坐标和直线l的函数解析式.

manfen5.com 满分网 查看答案
已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中点A的坐标是(-1,0),与y轴负半轴交于点C,其对称轴是直线x=manfen5.com 满分网,tan∠BAC=2.
(1)求二次函数y=ax2+bx+c的解析式;
(2)作圆O’,使它经过点A、B、C,点E是AC延长线上一点,∠BCE的平分线CD交圆O’于点D,连接AD、BD,求△ACD的面积;
(3)在(2)的条件下,二次函数y=ax2+bx+c的图象上是否存在点P,使得∠PDB=∠CAD?如果存在,请求出所有符合条件的P点坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y1=x2-2x+c的部分图象如图1所示.
(1)求c的取值范围;
(2)若抛物线经过点(0,-1),试确定抛物线y1=x2-2x+c的解析式;
(3)若反比例函数manfen5.com 满分网的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较y1与y2的大小.

manfen5.com 满分网 查看答案
图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A⇒B⇒C⇒D⇒A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.