满分5 > 初中数学试题 >

已知:在四边形ABCD中,AB=1,E,F,G,H分别是AB,BC,CD,DA上...

已知:在四边形ABCD中,AB=1,E,F,G,H分别是AB,BC,CD,DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图1,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并在图2中画出函数的草图;
②当x为何值时,S=manfen5.com 满分网
(2)如图3,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积能否等于manfen5.com 满分网?若能,求出相应x的值;若不能,请说明理由.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)①当四边形ABCD是正方形时,不难得出△AEH≌△BFE≌△CGF≌△DHG,因此四边形HEFG也是个正方形.直角三角形AHE中,AE=x,AH=1-x,那么可根据勾股定理求出HE2的值,即为S的值.由此可得出S,x的函数关系式. ②可将S=代入①的函数关系式中,即可得出x的值. (2)与(1)类似不难得出△AEH≌△CGF,△EBF≌△GDH,因此只需求出△AEH和△EFB的面积,就可以用S▱ABCD-(S△AEH+S△EFB)×2来求出四边形EFGH的面积. 可分别过H,F作AB的垂线,根据∠A的度数来求出这两条高,进而可根据上面分析的步骤求出S,x的函数关系式,然后将S=代入函数关系式中,可得出一个关于x的方程,如果方程无解则说明不存在这样的情况,如果有解,那么得出的x的值就是所求的值. 【解析】 (1)①在Rt△AEH中,AE=x,AH=1-x, 则S=HE2=x2+(1-x)2=2x2-2x+1=2(x-)2+. ②根据题意,得2(x-)2+=. 解方程,得x=,x=. 即得x=,x=.时,S=. (2)四边形EFGH的面积可以等于. 由条件,易证△AEH≌△CGF,△EBF≌△GDH. 作HM⊥AE于M,作FN⊥EB且FN交EB的延长线于N, ∵AE=x,则AH=1-x, 又在Rt△AMH中,∠HAM=30°, ∴HM=AH=(1-x). 同理得FN=BF=x. ∴S△AEH=AE•HM=x(1-x),S△EBF=EB•FN=x(1-x). 又∵SABCD=, ∴四边形EFGH的面积S=-4x(1-x)=x2-x+. ∴令x2-x+=, 解得x=,x=. 即x=,x=时,四边形EFGH的面积等于.
复制答案
考点分析:
相关试题推荐
对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.
现有△ABM,A(-1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).请通过计算判断CABM与CABN是否为全等抛物线;
(2)在图2中,以A、B、M三点为顶点,画出平行四边形.
①若已知M(0,n),求抛物线CABM的解析式,并直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与CABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且12a+5c=0.
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动.
①移动开始后第t秒时,设S=PQ2(cm2),试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
已知四边形ABCD是矩形,BC>AB,直线MN分别与AB,BC交于E,F两点,P为对角线AC上一动点(P不与A,C重合).
(1)当点E,F分别为AB,BC的中点时,(如图1)问点P在AC上运动时,点P,E,F能否构成直角三角形?若能,共有几个?请在图中画出所有满足条件的三角形.
(2)若AB=3,BC=4,P为AC的中点,当直线MN的移动时,始终保持MN∥AC,(如图2)求△PEF的面积S△PEF与FC的长x之间的函数关系式.
manfen5.com 满分网
查看答案
已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.
查看答案
如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1,A2B2,A3B3,A4B4,A5B5之间的距离均为15m,B1B5∥A1A5,将抛物线放在图(2)所示的直角坐标系中
(1)直接写出图(2)中点B1的坐标为______,B3的坐标为______,B5的坐标为______
(2)求图(2)中抛物线的函数表达式是______
(3)求图(1)中支柱A2B2的长度为______,A4B4的长度为______manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.