满分5 > 初中数学试题 >

如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(...

如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.

manfen5.com 满分网
(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求; ②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB-PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标. (2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC-BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式. (3)本题要分类讨论: ①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值; ②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN-CQ求出QN的表达式,根据题设的等量条件即可得出x的值. ③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN的长,联立CN的表达式即可求出x的值. 【解析】 (1)过点P作PQ⊥BC于点Q, 有题意可得:PQ∥AB, ∴△CQP∽△CBA, ∴=, ∴=, 解得:QP=x, ∴PM=3-x, 由题意可知,C(0,3),M(x,0),N(4-x,3), P点坐标为(x,3-x). (2)设△NPC的面积为S,在△NPC中,NC=4-x, NC边上的高为,其中,0≤x≤4. ∴S=(4-x)×x=(-x2+4x) =-(x-2)2+. ∴S的最大值为,此时x=2. (3)延长MP交CB于Q,则有PQ⊥BC. ①若NP=CP, ∵PQ⊥BC, ∴NQ=CQ=x. ∴3x=4, ∴x=. ②若CP=CN,则CN=4-x,PQ=x,CP=x,4-x=x, ∴x=; ③若CN=NP,则CN=4-x. ∵PQ=x,NQ=4-2x, ∵在Rt△PNQ中,PN2=NQ2+PQ2, ∴(4-x)2=(4-2x)2+(x)2, ∴x=. 综上所述,x=,或x=,或x=.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AB=AC=5,以AB为直径的⊙P交BC于H.点A,B在x轴上,点H在y轴上,B点的坐标为(1,0).
(1)求点A,H,C的坐标;
(2)过H点作AC的垂线交AC于E,交x轴于F,求证:EF是⊙P的切线;
(3)求经过A,O两点且顶点到x轴的距离等于4的抛物线解析式.

manfen5.com 满分网 查看答案
如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为manfen5.com 满分网,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.

manfen5.com 满分网 查看答案
如图,直线y=-manfen5.com 满分网+8与x轴、y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处.
(1)试确定直线AM的函数关系式;
(2)求过A、B、M三点的抛物线的函数关系式.

manfen5.com 满分网 查看答案
在矩形ABCD中,AB=4,BC=2,以A为坐标原点,AB所在的直线为x轴,建立直角坐标系.然后将矩形ABCD绕点A逆时针旋转,使点B落在y轴的E点上,则C和D点依次落在第二象限的F点上和x轴的G点上(如图).
(1)求经过B,E,G三点的二次函数解析式;
(2)设直线EF与(1)的二次函数图象相交于另一点H,试求四边形EGBH的周长.
(3)设P为(1)的二次函数图象上的一点,BP∥EG,求P点的坐标.

manfen5.com 满分网 查看答案
抛物线y=-x2+2bx-(2b-1)(b为常数)与x轴相交于A(x1,0),B(x2,0)(x2>x1>0)两点,设OA•OB=3(O为坐标系原点).
(1)求抛物线的解析式;
(2)设抛物线的顶点为C,抛物线的对称轴交x轴于点D,求证:点D是△ABC的外心;
(3)在抛物线上是否存在点P,使S△ABP=1?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.