满分5 > 初中数学试题 >

如图1,已知直线y=-x与抛物线y=-x2+6交于A,B两点. (1)求A,B两...

如图1,已知直线y=-manfen5.com 满分网x与抛物线y=-manfen5.com 满分网x2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
manfen5.com 满分网
(1)联立两函数的解析式即可求出A、B点的坐标. (2)可作AB的垂直平分线设其与x轴,y轴的交点分别为C、D,与AB的交点为M,可根据△BEO∽△OCM求出OC的长,同理可求出OD的长,即可得出C、D的坐标,用待定系数法即可求出AB垂直平分线的解析式.(另一种解法,可根据A、B的坐标得出AB中点的坐标,先求出直线AB的解析式,由于AB的垂直平分线与AB垂直,因此它的斜率与AB的斜率的乘积为-1,由此可得出所求直线的斜率,然后将中点坐标代入即可求出其解析式.) (3)要使三角形ABP的面积最大,那么P到AB的距离就最大,因此P点必在与直线AB平行且与抛物线只有一个交点的一次函数上(设此直线与x轴,y轴的交点为G、H),据此可求出此直线的解析式和P点的坐标.然后可通过在三角形OHG中,根据面积的不同表示方法求出P点到AB的距离(即O到GH的距离),进而可求出三角形ABP的面积. 【解析】 (1)依题意得 解之得 ∴A(6,-3),B(-4,2) (2)作AB的垂直平分线交x轴,y轴于C,D两点,交AB于M(如图1), 由(1)可知:OA=3,OB=2 ∴AB=5 AB-OB= 过B作BE⊥x轴,E为垂足 由△BEO∽△OCM,得:, ∴ 同理:OD=, ∴C(,0),D(0,-) 设CD的解析式为y=kx+b(k≠0) ∴ ∴ ∴AB的垂直平分线的解析式为:y=2x-. (3)若存在点P使△APB的面积最大,则点P在与直线AB平行且和抛物线只有一个交点的直线 y=-x+m上,并设该直线与x轴,y轴交于G,H两点(如图2). ∴ ∴x2-x+m-6=0 ∵抛物线与直线只有一个交点, ∴△=(-)2-4×(m-6)=0, ∴m=, 故x2-x+=0,即(x-1)2=0, 解得:x=1, 将x=1代入y=-+得:y=, ∴P(1,) 在直线GH:y=-x+中, ∴G(,0),H(0,) ∴GH= 设O到GH的距离为d, ∵GH•d=OG•OH ∵×d=×× ∴d=, 又∵由AB∥GH ∴P到AB的距离等于O到GH的距离d. ∴S最大面积=AB•d=×5.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,已知点A(manfen5.com 满分网,0),B(-manfen5.com 满分网,0),以点A为圆心,AB为半径的圆与x轴相交于点B,C,与y轴相交于点D,E.
(1)若抛物线y=manfen5.com 满分网x2+bx+c经过C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;
(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小;
(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系中,已知二次函数y=a(x-1)2+k的图象与x轴相交于点A,B,顶点为C,点D在这个二次函数图象的对称轴上.若四边形ACBD是一个边长为2且有一个内角为60°的菱形.求此二次函数的表达式.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知点B(-2manfen5.com 满分网,0),A(m,0)(-manfen5.com 满分网<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=-manfen5.com 满分网x2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=manfen5.com 满分网,O为坐标原点.
(1)求A、B、C三点的坐标;
(2)求证:∠ACB是直角;
(3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,点P(-m,m2)抛物线:y=x2上一点,将抛物线E沿x轴正方向平移2m个单位得到抛物线F,抛物线F的顶点为B,抛物线F交抛物线E于点A,点C是x轴上点B左侧一动点,点D是射线AB上一点,且∠ACD=∠POM.问△ACD能否为等腰三角形?若能,求点C的坐标;若不能,请说明理由.
manfen5.com 满分网
说明:
(1)如果你反复探索,没有解决问题,请写出探索过程(要求至少写3步);
(2)在你完成(1)之后,可以从①、②中选取一个条件,完成解答(选取①得7分;选取②得10分).①m=1;②m=2.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.