如图1,已知直线y=-
x与抛物线y=-
x
2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
考点分析:
相关试题推荐
如图,在直角坐标系中,已知点A(
,0),B(-
,0),以点A为圆心,AB为半径的圆与x轴相交于点B,C,与y轴相交于点D,E.
(1)若抛物线y=
x
2+bx+c经过C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;
(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小;
(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.
查看答案
在平面直角坐标系中,已知二次函数y=a(x-1)
2+k的图象与x轴相交于点A,B,顶点为C,点D在这个二次函数图象的对称轴上.若四边形ACBD是一个边长为2且有一个内角为60°的菱形.求此二次函数的表达式.
查看答案
如图,在平面直角坐标系中,已知点B(-2
,0),A(m,0)(-
<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.
查看答案
如图,抛物线y=-
x
2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=
,O为坐标原点.
(1)求A、B、C三点的坐标;
(2)求证:∠ACB是直角;
(3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.
查看答案
如图,点P(-m,m
2)抛物线:y=x
2上一点,将抛物线E沿x轴正方向平移2m个单位得到抛物线F,抛物线F的顶点为B,抛物线F交抛物线E于点A,点C是x轴上点B左侧一动点,点D是射线AB上一点,且∠ACD=∠POM.问△ACD能否为等腰三角形?若能,求点C的坐标;若不能,请说明理由.
说明:
(1)如果你反复探索,没有解决问题,请写出探索过程(要求至少写3步);
(2)在你完成(1)之后,可以从①、②中选取一个条件,完成解答(选取①得7分;选取②得10分).①m=1;②m=2.
查看答案