满分5 > 初中数学试题 >

已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物的顶点在第一象...

已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物的顶点在第一象限,且经过点A(0,-7)和点B.
(1)求a的取值范围;
(2)若OA=2OB,求抛物线的解析式.

manfen5.com 满分网
(1)因为二次函数过点A,所以可以确定b的值,又因为抛物线为y=(1-a)x2+8x-7又抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点,所以可以确定1-a<0,△>0,解不等式组即可求得a的取值范围; (2)因为OA=2OB,可求得点B的坐标,将点A,B的坐标代入二次函数的解析式即可求得a,b的值,即可求得二次函数的解析式. 【解析】 (1)由图可知,b=-7.(1分) 故抛物线为y=(1-a)x2+8x-7. 又因抛物线的顶点在第一象限,开口向下, 所以抛物线与x轴有两个不同的交点. ∴, 解之,得1<a<.(3分) 即a的取值范围是1<a<.(6分) (2)设B(x1,0), 由OA=20B, 得7=2x1,即x1=.(7分) 由于x1=,方程(1-a)x2+8x-7=0的一个根, ∴(1-a)()2+8×-7=0 ∴.(9分) 故所求所抛物线解析式为y=-x2+8x-7.(10分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知:如图,在坐标平面内,A(0,0),B(12,0),C(12,6),D(0,6),点Q沿DA边从点D开始向点A以1单位/秒的速度移动.点P沿AB边从点A开始向B以2单位/秒的速度移动,假设P、Q同时出发,t表示移动的时间(0≤t≤6).
(1)写出△PQA的面积S与t的函数关系式;
(2)四边形APCQ的面积与t有关吗?请说明理由;(3)当t为何值时,△PQC面积最小,并求此时△PQC的面积;
(4)△APQ能否成轴对称图形?若能,请求出相应的t值,并写出其对称轴的函数关系式;若不能,请说明理由.
查看答案
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式及点A、B、C的坐标;
(2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知二次函数的图象经过(0,0),(1,-1),(-2,14)三点.
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象与直线y=x+t(t≤1)相交于(x1,y1),(x2,y2)两点(x1≠x2).
①求t的取值范围;
②设m=y12+y22,求m与t之间的函数关系式及m的取值范围.
查看答案
如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

manfen5.com 满分网 查看答案
已知抛物线y=-x2+2(k-1)x+k+2与x轴交于A、B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.
(1)求实数k的取值范围;
(2)设OA、OB的长分别为a、b,且a:b=1:5,求抛物线的解析式;
(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.