满分5 > 初中数学试题 >

如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,),...

如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,manfen5.com 满分网),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

manfen5.com 满分网
(1)根据A、B的坐标用待定系数法即可求出直线AB的解析式. (2)本题的关键是求出C点的坐标,可先根据A、B的坐标求出AB的长,即可求出AD的值,然后在直角三角形ACD中根据∠DAC的余弦值求出AC的长,即可求出OC的长也就能求出C点的坐标.然后用待定系数法求出抛物线的解析式. 【解析】 (1)设直线AB的解析式为y=kx+2, 由于直线过A点.可得: 6k+2=0,k=-, 因此直线的解析式为:y=-x+2. (2)根据A、B的坐标可得AB=4, 因此∠BAO=30°, 直角三角形ACD中,AD=2,∠BAO=30°, ∴AC=4,OC=OA-AC=2, 因此:C(2,0); 设抛物线的解析式为y=k(x-2)(x-6), 将B点坐标代入后得:k=, 故抛物线的解析式为:y=(x-2)(x-6).
复制答案
考点分析:
相关试题推荐
已知抛物线y=-x2+(m-2)x+3(m+1)交x轴于A(x1,0),B(x2,0),交y轴的正半轴于C点,且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求抛物线的解析式;
(2)是否存在与抛物线只有一个公共点C的直线.如果存在,求符合条件的直线的表达式;如果不存在,请说明理由.
查看答案
如图,在等腰梯形ABCD中,AD∥BC,BA=CD,AD的长为4,S梯形ABCD=9.已知点A、B的坐标分别为(1,0)和(0,3).
(1)求点C的坐标;
(2)取点E(0,1),连接DE并延长交AB于P试猜想DF与AB之间的关系,并证明你的结论;
(3)将梯形ABCD绕点A旋转180°后成梯形AB′C′D′,求对称轴为直线x=3,且过A、B′两点的抛物线的解析式.

manfen5.com 满分网 查看答案
已知:OE是⊙E的半径,以OE为直径的⊙D与⊙E的弦OA相交于点B,在如图所示的直角坐标系中,⊙E交y轴于点C,连接BE、AC.
(1)当点A在第一象限⊙E上移动时,写出你认为正确的结论:______(至少写出四种不同类型的结论);
(2)若线段BE、OB的长是关于x的方程x2-(m+1)x+m=0的两根,且OB<BE,OE=2,求以E点为顶点且经过点B的抛物线的解析式;
(3)该抛物线上是否存在点P,使得△PBE是以BE为直角边的直角三角形?若存在,求出点P的坐标;若不存在,说明其理由.

manfen5.com 满分网 查看答案
有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图1,将直尺的短边DE放置与直角三角形纸板的斜边AB重合,且点D与点A重合.将直尺沿AB方向平移(如图2),设平移的长度为xcm(0≤x≤10),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm2
(1)当x=0时(如图1),S=______;当x=10时,S=______
(2)当0<x≤4时(如图2),求S关于x的函数关系式;
(3)当4<x<10时,求S关于x的函数关系式,并求出S的最大值(同学可在图3、图4中画草图).manfen5.com 满分网manfen5.com 满分网
查看答案
manfen5.com 满分网已知:在矩形ABCD中,AB=2,E为BC边上的一点,沿直线DE将矩形折叠,使C点落在AB边上的C点处.过C′作C′H⊥DC,C′H分别交DE、DC于点G、H,连接CG、CC′,CC′交GE于点F.
(1)求证:四边形CGC′E为菱形;
(2)设sin∠CDE=x,并设y=manfen5.com 满分网,试将y表示成x的函数;
(3)当(2)中所求得的函数的图象达到最高点时,求BC的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.