满分5 > 初中数学试题 >

如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A...

如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点.连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值,最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)

manfen5.com 满分网
(1)根据PE∥QD得出的同位角相等即可证得两三角形相似. (2)由于PE∥DQ,PF∥AQ,因此四边形PEQF是平行四边形,根据平行四边形的性质可知:S△PEF=S平行四边形PEQF,可先求出△AQD的面积,然后根据△AEP与△ADQ相似,用相似比的平方即面积比求出△APE的面积,同理可求出△DPF的面积,进而可求出平行四边形PEQF的面积表达式,也就能得出关于S,x的函数关系式,根据函数的性质即可得出S的最大值即对于的x的值. (3)△ADQ中,AD长为定值,因此要使△ADQ的周长最小,AQ+QD需最小,可根据轴对称图形的性质和两点间线段最短为依据来确定Q点的位置. (1)证明:∵PE∥DQ ∴△APE∽△ADQ; (2)【解析】 同(1)可证△APE∽△ADQ与△PDF∽△ADQ,及S△PEF=S平行四边形PEQF, 根据相似三角形的面积之比等于相似比得平方, ∴=,=, ∵S△AQD=AD×AB=×3×2=3, 得S△PEF=S平行四边形PEQF =(S△AQD-S△AEP-S△DFP) =×[3-×3-×3] =(-x2+2x) =-x2+x =-(x-)2+. ∴当x=,即P是AD的中点时,S△PEF取得最大值. (3)【解析】 作A关于直线BC的对称点A′,连DA′交BC于Q,则这个点Q就是使△ADQ周长最小的点,此时Q是BC的中点.
复制答案
考点分析:
相关试题推荐
如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,manfen5.com 满分网),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

manfen5.com 满分网 查看答案
已知抛物线y=-x2+(m-2)x+3(m+1)交x轴于A(x1,0),B(x2,0),交y轴的正半轴于C点,且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求抛物线的解析式;
(2)是否存在与抛物线只有一个公共点C的直线.如果存在,求符合条件的直线的表达式;如果不存在,请说明理由.
查看答案
如图,在等腰梯形ABCD中,AD∥BC,BA=CD,AD的长为4,S梯形ABCD=9.已知点A、B的坐标分别为(1,0)和(0,3).
(1)求点C的坐标;
(2)取点E(0,1),连接DE并延长交AB于P试猜想DF与AB之间的关系,并证明你的结论;
(3)将梯形ABCD绕点A旋转180°后成梯形AB′C′D′,求对称轴为直线x=3,且过A、B′两点的抛物线的解析式.

manfen5.com 满分网 查看答案
已知:OE是⊙E的半径,以OE为直径的⊙D与⊙E的弦OA相交于点B,在如图所示的直角坐标系中,⊙E交y轴于点C,连接BE、AC.
(1)当点A在第一象限⊙E上移动时,写出你认为正确的结论:______(至少写出四种不同类型的结论);
(2)若线段BE、OB的长是关于x的方程x2-(m+1)x+m=0的两根,且OB<BE,OE=2,求以E点为顶点且经过点B的抛物线的解析式;
(3)该抛物线上是否存在点P,使得△PBE是以BE为直角边的直角三角形?若存在,求出点P的坐标;若不存在,说明其理由.

manfen5.com 满分网 查看答案
有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图1,将直尺的短边DE放置与直角三角形纸板的斜边AB重合,且点D与点A重合.将直尺沿AB方向平移(如图2),设平移的长度为xcm(0≤x≤10),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm2
(1)当x=0时(如图1),S=______;当x=10时,S=______
(2)当0<x≤4时(如图2),求S关于x的函数关系式;
(3)当4<x<10时,求S关于x的函数关系式,并求出S的最大值(同学可在图3、图4中画草图).manfen5.com 满分网manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.