满分5 > 初中数学试题 >

抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为...

抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.

manfen5.com 满分网
(1)根据抛物线过C点,可得出c=-3,对称轴x=1,则-=1,然后可将B点坐标代入抛物线的解析式中,联立由对称轴得出的关系式即可求出抛物线的解析式. (2)本题的关键是要确定P点的位置,由于A、B关于抛物线的对称轴对称,因此可连接AC,那么P点就是直线AC与对称轴的交点.可根据A、C的坐标求出AC所在直线的解析式,进而可根据抛物线对称轴的解析式求出P点的坐标. (3)根据圆和抛物线的对称性可知:圆心必在对称轴上.因此可用半径r表示出M、N的坐标,然后代入抛物线中即可求出r的值. 【解析】 (1)将C(0,-3)代入y=ax2+bx+c, 得c=-3. 将c=-3,B(3,0)代入y=ax2+bx+c, 得9a+3b+c=0.(1) ∵直线x=1是对称轴, ∴.(2)(2分) 将(2)代入(1)得 a=1,b=-2. 所以,二次函数得解析式是y=x2-2x-3. (2)AC与对称轴的交点P即为到B、C的距离之差最大的点. ∵C点的坐标为(0,-3),A点的坐标为(-1,0), ∴直线AC的解析式是y=-3x-3, 又∵直线x=1是对称轴, ∴点P的坐标(1,-6). (3)设M(x1,y)、N(x2,y),所求圆的半径为r, 则x2-x1=2r,(1) ∵对称轴为直线x=1,即=1, ∴x2+x1=2.(2) 由(1)、(2)得:x2=r+1.(3) 将N(r+1,y)代入解析式y=x2-2x-3, 得y=(r+1)2-2(r+1)-3. 整理得:y=r2-4. 由所求圆与x轴相切,得到r=|y|,即r=±y, 当y>0时,r2-r-4=0, 解得,,(舍去), 当y<0时,r2+r-4=0, 解得,,(舍去). 所以圆的半径是或.
复制答案
考点分析:
相关试题推荐
四边形OABC是等腰梯形,OA∥BC.在建立如图的平面直角坐标系中,A(4,0),B(3,2),点M从O点以每秒2个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动,过点N作NP垂直于x轴于P点连接AC交NP于Q,连接MQ.
(1)写出C点的坐标;
(2)若动点N运动t秒,求Q点的坐标;(用含t的式子表示)
(3)其△AMQ的面积S与时间t的函数关系式,并写出自变量t的取值范围;
(4)当t取何值时,△AMQ的面积最大;
(5)当t为何值时,△AMQ为等腰三角形.

manfen5.com 满分网 查看答案
如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点.连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值,最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)

manfen5.com 满分网 查看答案
如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,manfen5.com 满分网),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

manfen5.com 满分网 查看答案
已知抛物线y=-x2+(m-2)x+3(m+1)交x轴于A(x1,0),B(x2,0),交y轴的正半轴于C点,且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求抛物线的解析式;
(2)是否存在与抛物线只有一个公共点C的直线.如果存在,求符合条件的直线的表达式;如果不存在,请说明理由.
查看答案
如图,在等腰梯形ABCD中,AD∥BC,BA=CD,AD的长为4,S梯形ABCD=9.已知点A、B的坐标分别为(1,0)和(0,3).
(1)求点C的坐标;
(2)取点E(0,1),连接DE并延长交AB于P试猜想DF与AB之间的关系,并证明你的结论;
(3)将梯形ABCD绕点A旋转180°后成梯形AB′C′D′,求对称轴为直线x=3,且过A、B′两点的抛物线的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.