满分5 > 初中数学试题 >

已知抛物线y=(k-1)x2+(2+4k)x+1-4k过点A(4,0). (1)...

已知抛物线y=(k-1)x2+(2+4k)x+1-4k过点A(4,0).
(1)试确定抛物线的解析式及顶点B的坐标;
(2)在y轴上确定一点P,使线段AP+BP最短,求出P点的坐标;
(3)设M为线段AP的中点,试判断点B与以AP为直径的⊙M的位置关系,并说明理由.
(1)把A点坐标代入抛物线可得出k值以及点B坐标. (2)由题意可得点A关于y轴对称的坐标A′,易求解析式. (3)本题要靠辅助线的帮助.过点B作BE⊥OA于E,得出E为OA的中点,求出AP的长度,则可判断. 【解析】 (1)所求抛物线的解析式为:y=-x2+3x=-(x-2)2+3. 顶点B的坐标为(2,3). (2)∵y=-x2+3x, ∴y=0时,解得x=4或0, ∴点A的坐标是(4,0), ∴关于y轴的对称点A′的坐标为(-4,0). 则直线A'B与y轴的交点就是P点. 设直线A'B的解析式为y=x+2. ∴P的坐标为(0,2). (3)过点B作BE⊥OA于E,则BE∥OP. 由抛物线的对称性可知,点E为OA的中点. 直线BE与AP的交点就是AP的中点M. AP=2,⊙M的半径R= BM=3-1=2<, ∴点B在⊙M的内部.
复制答案
考点分析:
相关试题推荐
抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.

manfen5.com 满分网 查看答案
四边形OABC是等腰梯形,OA∥BC.在建立如图的平面直角坐标系中,A(4,0),B(3,2),点M从O点以每秒2个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动,过点N作NP垂直于x轴于P点连接AC交NP于Q,连接MQ.
(1)写出C点的坐标;
(2)若动点N运动t秒,求Q点的坐标;(用含t的式子表示)
(3)其△AMQ的面积S与时间t的函数关系式,并写出自变量t的取值范围;
(4)当t取何值时,△AMQ的面积最大;
(5)当t为何值时,△AMQ为等腰三角形.

manfen5.com 满分网 查看答案
如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点.连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值,最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)

manfen5.com 满分网 查看答案
如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,manfen5.com 满分网),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.

manfen5.com 满分网 查看答案
已知抛物线y=-x2+(m-2)x+3(m+1)交x轴于A(x1,0),B(x2,0),交y轴的正半轴于C点,且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求抛物线的解析式;
(2)是否存在与抛物线只有一个公共点C的直线.如果存在,求符合条件的直线的表达式;如果不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.