满分5 > 初中数学试题 >

(以下两小题选做一题,第1小题满分14分,第2小题满分为10分.若两小题都做,以...

(以下两小题选做一题,第1小题满分14分,第2小题满分为10分.若两小题都做,以第1小题计分)
选做第______小题.
(1)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①如图,将纸片沿CE对折,点B落在x轴上的点D处,求点D的坐标;
②在①中,设BD与CE的交点为P,若点P,B在抛物线y=x2+bx+c上,求b,c的值;
③若将纸片沿直线l对折,点B落在坐标轴上的点F处,l与BF的交点为Q,若点Q在②的抛物线上,求l的解析式.
(2)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①求直线AC的解析式;
②若M为AC与BO的交点,点M在抛物线y=-manfen5.com 满分网x2+kx上,求k的值;
③将纸片沿CE对折,点B落在x轴上的点D处,试判断点D是否在②的抛物线上,并说明理由.manfen5.com 满分网
(1)①求D点坐标,关键是求OD的长,根据折叠的性质可知:CD=BC=OA,在直角三角形OCD中,根据OC、CD的长,即可用勾股定理求出OD的值.也就求出了D点的坐标. ②还是根据折叠的性质求解,根据折叠的性质不难得出CE垂直平分BD,即P为BD中点,因此P点横坐标为OD的长加上AD的一半,而P点纵坐标为B点纵坐标的一半,据此可求出P点坐标.然后将P、B的坐标代入抛物线的解析式中即可求出待定系数的值. ③由于F点的位置不确定,可分两种情况: ①当F在x轴上时,Q点纵坐标为B点总坐标的一半,由此可求出Q点纵坐标,将其代入抛物线的解析式中,可求得Q点的坐标.然后根据Q点坐标,然后根据Q点坐标去求直线l与坐标轴其他交点的坐标. ②当F在y轴上时,Q点横坐标为B点横坐标的一半,可将其代入抛物线的解析式中求出Q点坐标,后同①.(本题也可先求出直线BQ的解析式,由于直线l垂直BQ,那么直线l的斜率和直线BQ的斜率的积为-1,又知直线l过Q点可求出直线l的解析式.) (2)题较简单,参照(1)题部分解题过程即可. ①已知OA=5,OC=4故A(5,0),C(0,4)求出直线AC的解析式为y=-x+4. ②可知M点坐标为(,2),设-()2+k•=2可求得k值. ③已知CD=BC=OA=5,OC=4,∠COD=90°推出D(3,0).当x=3时,y=-×32+×3=0,得出点D在抛物线上. 【解析】 (1)①根据题意知,CD=CB=OA=5 ∵∠COD=90° ∴CD==3 ∴D点坐标为(3,0) ②过P作PG⊥x轴于G 据题知,PG=AB=2,DG=AD=1 ∴P点坐标(4,2) ∵点P,B在抛物线y=x2+bx+c上 ∴b=-7,c=14 ③当点F在x轴上时,过Q作QM⊥x轴于M 同②可知QM=AB=2,则Q点的纵坐标为2 得x2-7x+14=2 ∴x=3或x=4 ∴Q点的坐标为(3,2)或(4,2) 当Q点坐标为(3,2)时,如图,OM=3,MA=2,FA=4 AB=4 FA=AB,而l为BF的中垂线 ∴点A在l上 ∴l的解析式为y=-x+5. 当Q点坐标为(4,2)时,如图,OM=4,MA=1,OF=3,CF=5,而CB=5; ∴CF=CB ∵l为BF的中垂线 ∴点C在l上. ∴l的解析式为y=-x+4. 当点F在y轴上时,可求得Q(,),l与y轴的交点为(0,) ∴l的解析式为y=-2x+ 综上所述,l的解析式为y=-x+5或y=-x+4或y=-2x+. (2)①∵OA=5,OC=4, ∴A(5,0),C(0,4); ∴直线AC的解析式为y=-x+4. ②可知:M点坐标为(,2). 由题设知:-()2+k•=2. ∴k= ③∵CD=BC=OA=5,OC=4,∠COD=90° ∴OD=3,即D(3,0). 当x=3时,y=-×32+×3=0 ∴点D在抛物线上.
复制答案
考点分析:
相关试题推荐
已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)
(1)求点A、E的坐标;
(2)若y=manfen5.com 满分网x2+bx+c过点A、E,求抛物线的解析式;
(3)连接PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.

manfen5.com 满分网 查看答案
如图,已知抛物线y=x2-2x+n与x轴交于不同的两点A,B,其顶点是C,D是抛物线的对称轴与x轴的交点.
(1)求实数n的取值范围.
(2)求顶点C的坐标;
(3)求线段AB的长;
(4)若直线y=manfen5.com 满分网x+1分别交x轴于E,交y轴于F,问△BDC与△EOF是否有可能全等?如果有可能全等请给出证明;如果不可能全等请说明理由.

manfen5.com 满分网 查看答案
已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
manfen5.com 满分网(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形______;等腰梯形______;平行四边形______;梯形______;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.
查看答案
如图,正方形ABCD的边长为5cm,Rt△EFG中,∠G=90°,FG=4cm,EG=3cm,且点B、F、C、G在直线l上,△EFG由F、C重合的位置开始,以1cm/秒的速度沿直线l按箭头所表示的方向作匀速直线运动.
(1)当△EFG运动时,求点E分别运动到CD上和AB上的时间;
(2)设x(秒)后,△EFG与正方形ABCD重合部分的面积为y(cm2),求y与x的函数关系式;
(3)在下面的直角坐标系中,画出0≤x≤2时中函数的大致图象;如果以O为圆心的圆与该图象交于点P(x,manfen5.com 满分网),与x轴交于点A、B(A在B的左侧),求∠PAB的度数.
manfen5.com 满分网manfen5.com 满分网
查看答案
已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为manfen5.com 满分网
(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.