满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy,半径为1的⊙O分别交x轴、y轴于A、B、C、D四点...

如图,在平面直角坐标系xOy,半径为1的⊙O分别交x轴、y轴于A、B、C、D四点,抛物线y=x2+bx+c经过点C且与直线AC只有一个公共点.
(1)求直线AC的解析式;
(2)求抛物线y=x2+bx+c的解析式;
(3)点P为(2)中抛物线上的点,由点P作x轴的垂线,垂足为点Q,问:此抛物线上是否存在这样的点P,使△PQB∽△ADB?若存在,求出P点坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)因为⊙O的半径为1,所以可知A、B、C、D四点的坐标,根据A、C两点的坐标用待定系数法即可求出直线AC的解析式. (2)因为C点坐标为(0,-1),抛物线过C点,所以c=-1,将y=-x-1代入解析式y=x2+bx-1得x2+(b+1)x=0,因为抛物线与直线只有一个交点,故判别式△=0,可求得b的值; (3)假设存在符合条件的点P,根据相似三角形的性质,判断出PQ=QB,列出关于P点坐标的表达式,即可解答. 【解析】 (1)由题意可知A(-1,0),B(1,0),C(0,-1),D(0,1), 设过A、C两点的直线解析式为y=kx+b(k≠0), 把A(-1,0),C(0,-1)代入得, 解得, 故直线AC的解析式为y=-x-1; (2)∵抛物线过C(0,-1), ∴x2+(b+1)x=0, ∵直线AC与抛物线只有一个公共点C, ∴方程x2+(b+1)x=O有两个相等实数根, 即△=0, ∴b1=b2=-1, ∴抛物线解析式为y=x2-x-1; (3)假设存在符合条件的点P, 设P点坐标为(a,a2-a-1),则Q(a,0), ∵△ADB为等腰直角三角形,△PQB∽△ADB, ∴△PQB为等腰直角三角形,又PQ⊥QB, ∴PQ=QB即|a2-a-1|=|a-1|, 当a2-a-1=a-1时, 解得:a1=0,a2=2; 当a2-a-1=-(a-1)时, 解得:a3=,a4=-, ∴a1=0,a2=2,a3=,a4=-, ∴存在符合条件的点P,共有四个, 分别为P1(O,-1)、P2(2,1)、P3(,1-)、P4(-,1+).
复制答案
考点分析:
相关试题推荐
矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=manfen5.com 满分网x与BC边相交于点D.
(1)求点D的坐标;
(2)若抛物线y=ax2+bx经过D、A两点,试确定此抛物线的表达式;
(3)P为x轴上方(2)中抛物线上一点,求△POA面积的最大值;
(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),△AOB绕O点按逆时针方向旋转90°得到△COD.
(1)求C、D两点的坐标;
(2)求经过C、D、B三点的抛物线的解析式;
(3)设(2)中的抛物线的顶点为P,AB的中点为M,试判断△PMB是钝角三角形、直角三角形还是锐角三角形,并说明理由.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,manfen5.com 满分网).
(1)求圆心的坐标;
(2)抛物线y=ax2+bx+c过O、A两点,且顶点在正比例函数y=-manfen5.com 满分网x的图象上,求抛物线的解析式;
(3)过圆心C作平行于x轴的直线DE,交⊙C于D、E两点,试判断D、E两点是否在(2)中的抛物线上;
(4)若(2)中的抛物线上存在点P(x,y),满足∠APB为钝角,求x的取值范围.

manfen5.com 满分网 查看答案
在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象的顶点为M,求AM的长.

manfen5.com 满分网 查看答案
(以下两小题选做一题,第1小题满分14分,第2小题满分为10分.若两小题都做,以第1小题计分)
选做第______小题.
(1)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①如图,将纸片沿CE对折,点B落在x轴上的点D处,求点D的坐标;
②在①中,设BD与CE的交点为P,若点P,B在抛物线y=x2+bx+c上,求b,c的值;
③若将纸片沿直线l对折,点B落在坐标轴上的点F处,l与BF的交点为Q,若点Q在②的抛物线上,求l的解析式.
(2)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①求直线AC的解析式;
②若M为AC与BO的交点,点M在抛物线y=-manfen5.com 满分网x2+kx上,求k的值;
③将纸片沿CE对折,点B落在x轴上的点D处,试判断点D是否在②的抛物线上,并说明理由.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.