如图,已知抛物线y=mx
2+nx+p与y=x
2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx
2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax
2+bx+c关于y轴对称的二次函数解析式为______.
(2)A,B的中点是点C,则sin∠CMB=______
考点分析:
相关试题推荐
OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=
x
2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.
查看答案
已知抛物线y=-x
2-2kx+3k
2(k>0)交x轴于A、B两点,交y轴于点C,以AB为直径的⊙E交y轴于点D、F(如图),且DF=4,G是劣弧A D上的动点(不与点A、D重合),直线CG交x轴于点P.
(1)求抛物线的解析式;
(21)当直线CG是⊙E的切线时,求tan∠PCO的值;
(31)当直线CG是⊙E的割线时,作GM⊥AB,垂足为H,交PF于点M,交⊙E于另一点N,设MN=t,GM=u,求u关于t的函数关系式.
查看答案
在Rt△ABC中,∠C=90°,AC=3,BC=4,点E在直角边AC上(点E与A、C两点均不重合),点F在斜边AB上(点F与A、B两点均不重合).
(1)若EF平分Rt△ABC的周长,设AE长为x,试用含x的代数式表示△AEF的面积;
(2)是否存在线段EF将Rt△ABC的周长和面积同时平分?若存在,求出此时AE的长;若不存在,说明理由.
查看答案
如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形AB
CD内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax
2+bx+c,顶点为点N.
(1)求过A、C两点直线的解析式;
(2)当点N在半圆M内时,求a的取值范围;
(3)过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M为顶点的三角形相似时,求点N的坐标.
查看答案
如图,△OAB是边长为4+2
的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PE∥x轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-
x
2+bx+c经过点P、E,求抛物线的解析式.
查看答案