如图,已知二次函数y=ax
2+2x+3的图象与x轴交于点A、点B(点B在X轴的正半轴上),与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在该二次函数的图象上是否存在点P(点P与点B、C补重合),使得△PBC是以BC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请你说明理由.
考点分析:
相关试题推荐
如图是二次函数y=(x+2)
2的图象,顶点为A,与y轴的交点为B.
(1)求经过A、B两点的直线的函数关系式;
(2)若⊙M的圆心为M(m,0),半径为r,过A向该圆作切线,切点为N.请求出所有能使△AMN与△ABO全等的m、r的值;
(3)请在第二象限中的抛物线上找一点C,使△ABC的面积与△ABO的面积相等.
查看答案
如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.
(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为Scm
2.
①求S关于t的函数关系式;
②(附加题)求S的最大值.
查看答案
如图,已知抛物线y=mx
2+nx+p与y=x
2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx
2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax
2+bx+c关于y轴对称的二次函数解析式为______.
(2)A,B的中点是点C,则sin∠CMB=______
查看答案
OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=
x
2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.
查看答案
已知抛物线y=-x
2-2kx+3k
2(k>0)交x轴于A、B两点,交y轴于点C,以AB为直径的⊙E交y轴于点D、F(如图),且DF=4,G是劣弧A D上的动点(不与点A、D重合),直线CG交x轴于点P.
(1)求抛物线的解析式;
(21)当直线CG是⊙E的切线时,求tan∠PCO的值;
(31)当直线CG是⊙E的割线时,作GM⊥AB,垂足为H,交PF于点M,交⊙E于另一点N,设MN=t,GM=u,求u关于t的函数关系式.
查看答案