满分5 > 初中数学试题 >

已知二次函数y=ax2-4a图象的顶点坐标为(0,4)矩形ABCD在抛物线与x轴...

已知二次函数y=ax2-4a图象的顶点坐标为(0,4)矩形ABCD在抛物线与x轴围成的图形内,顶点B、C在x轴上,顶点A、D在抛物线上,且A在D点的右侧,
(1)求二次函数的解析式______
(2)设点A的坐标为(x,y),试求矩形ABCD的周长L与自变量x的函数关系;
(3)周长为10的矩形ABCD是否存在?若存在,请求出顶点A的坐标;若不存在,请说明理由.
(1)直接利用待定系数法求解即可:y=-x2+4; (2)根据解析式可表示出AD=2x,AB=-x2+4,所以矩形ABCD的周长L与自变量x的函数关系为l=-2x2+4x+8(0<x<2); (3)直接把l=10代入解析式求得x=1,结合实际意义可知存在周长为10的矩形ABCD,且点A的坐标为(1,3). 【解析】 (1)由题意得-4a=4 ∴a=-1 ∴二次函数的解析式为y=-x2+4 (2)设点A(x,y) ∵点A在抛物线y=-x2+4上 ∴y=-x2+4则AD=2x,AB=-x2+4 ∴L=2(AD+AB)=2(2x-x2+4)=-2x2+4x+8(0<x<2) (3)当L=10时-2x2+4x+8=10x2-2x+1=0 ∴x1=x2=1 ∴当x=1时,y=-1+4=3 ∴存在周长为10的矩形ABCD,且点A的坐标为(1,3).
复制答案
考点分析:
相关试题推荐
如图,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(3,6)三点,且与y轴交于点E.(1)求抛物线的解析式;
(2)若点F的坐标为(0,-manfen5.com 满分网),直线BF交抛物线于另一点P,试比较△AFO与△PEF的周长的大小,并说明理由.

manfen5.com 满分网 查看答案
已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上(如图示)
(1)求该二次函数的解析式;
(2)P为线段AB上一动点(A、B两端点除外),过P作x轴的垂线与二次函数的图象交于点Q,设线段PQ的长为l,点P的横坐标为x,求出l与x之间的函数关系式,并求出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标,并求出梯形的面积;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D.(1)求:经过A、B、C三点的抛物线的解析式;
(2)求四边形ABDC的面积;
(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网

manfen5.com 满分网 查看答案
已知抛物线y=x2+(2n-1)x+n2-1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.
查看答案
如图,已知二次函数y=ax2+2x+3的图象与x轴交于点A、点B(点B在X轴的正半轴上),与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在该二次函数的图象上是否存在点P(点P与点B、C补重合),使得△PBC是以BC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请你说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.