满分5 > 初中数学试题 >

已知二次函数y=x2-kx+k-5. (1)求证:无论k取何实数,此二次函数的图...

已知二次函数y=x2-kx+k-5.
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式;
(3)若(2)中的二次函数的图象与x轴交于A、B,与y轴交于点C;D是第四象限函数图象上的点,且OD⊥BC于H,求点D的坐标.
manfen5.com 满分网
(1)根据二次函数与二次方程的对应关系,可判断出二次方程x2-kx+k-5=0有两个不同的根,易得此二次函数的图象与x轴都有两个交点; (2)根据对称轴的方程易得k的值,将k的值代入可得解析式; (3)根据解析式,易得ABC的坐标,进而可得BC的斜率,根据垂直的判定方法,可得OD的斜率,解可得x的值,即可得D的坐标. (1)证明:对于二次方程:x2-kx+k-5=0, 有△=(-k)2-4k+20=k2-4k+4+16=(k-2)2+16>0; 可得其必有两个不相等的根; 故无论k取何实数,此二次函数的图象与x轴都有两个交点. (2)【解析】 若此二次函数图象的对称轴为x=1, 则对称轴的方程为-(-k)=1,k=2; 易得它的解析式为y=x2-2x-3. (3)【解析】 若函数解析式为y=x2-2x-3; 易得其与x轴的交点坐标为A(-1,0)B(3,0); 与y轴的交点C的坐标为(0,-3); BC的解析式为:y=x-3; 设D的坐标为(x,x2-2x-3),由OD⊥BC,图象过(0,0),则OD的解析式为:y=-x, 易得x2-2x-3=-x; 故x=, 解可得D的坐标为(,-)
复制答案
考点分析:
相关试题推荐
已知二次函数y=ax2-4a图象的顶点坐标为(0,4)矩形ABCD在抛物线与x轴围成的图形内,顶点B、C在x轴上,顶点A、D在抛物线上,且A在D点的右侧,
(1)求二次函数的解析式______
(2)设点A的坐标为(x,y),试求矩形ABCD的周长L与自变量x的函数关系;
(3)周长为10的矩形ABCD是否存在?若存在,请求出顶点A的坐标;若不存在,请说明理由.
查看答案
如图,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(3,6)三点,且与y轴交于点E.(1)求抛物线的解析式;
(2)若点F的坐标为(0,-manfen5.com 满分网),直线BF交抛物线于另一点P,试比较△AFO与△PEF的周长的大小,并说明理由.

manfen5.com 满分网 查看答案
已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上(如图示)
(1)求该二次函数的解析式;
(2)P为线段AB上一动点(A、B两端点除外),过P作x轴的垂线与二次函数的图象交于点Q,设线段PQ的长为l,点P的横坐标为x,求出l与x之间的函数关系式,并求出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标,并求出梯形的面积;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D.(1)求:经过A、B、C三点的抛物线的解析式;
(2)求四边形ABDC的面积;
(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为manfen5.com 满分网

manfen5.com 满分网 查看答案
已知抛物线y=x2+(2n-1)x+n2-1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.