满分5 > 初中数学试题 >

已知平面直角坐标系xOy中,点A在抛物线y=x2+上,过A作AB⊥x轴于点B,A...

已知平面直角坐标系xOy中,点A在抛物线y=manfen5.com 满分网x2+manfen5.com 满分网上,过A作AB⊥x轴于点B,AD⊥y轴于点D,将矩形ABOD沿对角线BD折叠后得A的对应点为A′,重叠部分(阴影)为△BDC.
(1)求证:△BDC是等腰三角形;
(2)如果A点的坐标是(1,m),求△BDC的面积;
(3)在(2)的条件下,求直线BC的解析式,并判断点A′是否落在已知的抛物线上?请说明理由.
manfen5.com 满分网
(1)可通过证角相等来求解.由折叠的性质可得出∠ABD=∠ABD,根据AB∥OD,可得出∠ABD=∠ODB,因此∠ODB=∠CBD,CD=BC,△BDC是等腰三角形. (2)求△BCD的面积,可用△BOD和△BOC的面积差来求,已知A的坐标为(1,m),那么可得出OB=AD=1,由于A在抛物线上,可根据抛物线的解析式求出m的值,即可得出AB、OD的长.进而可求出∠ABD的度数,也就能求出∠OBC的度数.在直角三角形OBC中,根据OB和∠OBC的度数即可求出OC的长,然后根据三角形的面积公式即可求出△BCD的面积. (3)在(2)中已得出了B、C的坐标,可用待定系数法求出直线BC的解析式. 判定A′是否在抛物线上,首先要知道A′的坐标,可过A′作x轴的垂线,用求OC的方法求出A′的纵坐标,然后代入直线BC中即可得出A′的坐标,将A′的坐标代入抛物线的解析式中即可判断出A′是否在抛物线上. (1)证明:由折叠的性质之:∠ABD=∠DBC, ∵四边形ABOD是矩形 ∴AB∥DO ∴∠ABD=∠CDB ∴∠CBD=∠BDC ∴△BDC是等腰三角形. (2)【解析】 ∵点A(1,m)在y=x2+上, ∴m=+=. 在直角三角形ABD中,AB=,DA=1, ∴∠ABD=30°, ∴∠CBO=30°,CO=OB•tan∠CBO=, S△BCD=S△BDO-S△BCO=OD•OB-OB•OC=-=. (3)【解析】 设直线BC解析式为:y=ax+b, ∵C(0,),B(1,0); ∴, 解得, y=-+, 设A′的坐标为(x,y),过A′作A′M⊥x轴于M, A′M=BA′=AB=, ∴y=, 代入y=-+, 得x=-, 点A′的坐标是(-,), 将x=-代入y=x2+中 得:y=, ∴A′落在此抛物线上.
复制答案
考点分析:
相关试题推荐
已知:直线y=2x+6与x轴和y轴分别交于A、C两点,抛物线y=-x2+bx+c经过点A、C,点B是抛物线与x轴的另一个交点.
(1)求抛物线的解析式及B的坐标;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=manfen5.com 满分网x+a与(1)中所求的抛物线交于M、N两点,问:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=x2-mx+m-2.
(1)求证:此抛物线与x轴有两个不同的交点;
(2)若m是整数,抛物线y=x2-mx+m-2与x轴交于整数点,求m的值;
(3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B.若m为坐标轴上一点,且MA=MB,求点M的坐标.
查看答案
如图所示,在平面直角坐标系中,过坐标原点O的圆M分别交x轴、y轴于点A(6,0)、B(0,-8).
(1)求直线AB的解析式;
(2)若有一条抛物线的对称轴平行于y轴且经过M点,顶点C在圆M上,开口向下,且经过点B,求此抛物线的解析式;
(3)设(2)中的抛物线与x轴交于D(x1,y1)、E(x2,y2)两点,且x1<x2,在抛物线上是否存在点P,使△PDE的面积是△ABC面积的manfen5.com 满分网?若存在,求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网为了参加市科技节展览,同学们制造了一个截面为抛物线形的隧道模型,用了三种正方形的钢筋支架.在画设计图时,如果在直角坐标系中,抛物线的函数解析式为y=-x2+c,正方形ABCD的边长和正方形EFGH的边长之比为5:1,求:
(1)抛物线解析式中常数c的值;
(2)正方形MNPQ的边长.
查看答案
如图,正方形ABCD的边长为4cm,点P是BC边上不与点B、C重合的任意一点,连接AP,过点P作PQ⊥AP交DC于点Q,设BP的长为xcm,CQ的长为ycm.
(1)点P在BC上运动的过程中y的最大值为______cm;
(2)当y=manfen5.com 满分网cm时,求x的值为______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.