满分5 > 初中数学试题 >

已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对...

已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点.
(1)求C点,C′点的坐标(可用含m的代数式表示);
(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C,C′,P,Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示);
(3)在(2)的条件下,求出平行四边形的周长.

manfen5.com 满分网
(1)根据抛物线的解析式y=x2-2x-m(m>0)可求出对称轴直线,令x=0,可求出C点坐标,根据其对称轴可求出C′的坐标. (2)画出图形,根据平行四边形的性质,令对边平行且相等或对角线互相垂直平分解答. (3)根据勾股定理求出各边长,即可求出四边形周长. 【解析】 (1)所求对称轴为直线x=1,C(0,-m)C′(2,-m); (2)如图所示 ①当PQ∥CC′且PQ=2时,P横坐标为3,代入二次函数解析式求得P(3,3-m), ②当P′Q∥CC′且PQ=2时,P横坐标为-1,代入二次函数解析式求得P(-1,3-m), ③因为CC′⊥Q'P″,当Q′F=P″F,CF=C'F时,P″为二次函数顶点坐标,为(1,-1-m), 由于P″和Q′关于直线CC′对称, 所以Q′纵坐标为2(-m)+1+m=-m+1, 得Q′(1,1-m), 所以满足条件的P、Q坐标为P(-1,3-m),Q(1,3-m);P′(3,3-m),Q(1,3-m);P″(1,-1-m),Q′(1,1-m). (3)①因为Q点纵坐标为3-m,C点纵坐标为-m, 所以CW=3-m+m=3,又因为WQ=1, 所以CQ==, 又因为CC′=2, 所以平行四边形CC′P′Q周长为(2+)×2=4+2, 同理,平行四边形CC′QP周长也为4+2. ②因为CF=1,FQ=[1-m-(-1-m)]=1,C′Q==. 平行四边形CC′P′Q周长为4, 所求平行四边形周长为4+2或.
复制答案
考点分析:
相关试题推荐
如图,某学校校园内有一块形状为直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,现计划在上面建设一个面积为S的矩形综合楼PMBN,其中点P在线段AD上,且PM的长至少为36m.
(1)求边AD的长;
(2)设PA=x(m),求S关于x的函数关系式,并指出自变量x的取值范围;
(3)若S=3300m2,求PA的长.(精确到0.1m)

manfen5.com 满分网 查看答案
已知平面直角坐标系xOy中,点A在抛物线y=manfen5.com 满分网x2+manfen5.com 满分网上,过A作AB⊥x轴于点B,AD⊥y轴于点D,将矩形ABOD沿对角线BD折叠后得A的对应点为A′,重叠部分(阴影)为△BDC.
(1)求证:△BDC是等腰三角形;
(2)如果A点的坐标是(1,m),求△BDC的面积;
(3)在(2)的条件下,求直线BC的解析式,并判断点A′是否落在已知的抛物线上?请说明理由.
manfen5.com 满分网
查看答案
已知:直线y=2x+6与x轴和y轴分别交于A、C两点,抛物线y=-x2+bx+c经过点A、C,点B是抛物线与x轴的另一个交点.
(1)求抛物线的解析式及B的坐标;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=manfen5.com 满分网x+a与(1)中所求的抛物线交于M、N两点,问:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=x2-mx+m-2.
(1)求证:此抛物线与x轴有两个不同的交点;
(2)若m是整数,抛物线y=x2-mx+m-2与x轴交于整数点,求m的值;
(3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B.若m为坐标轴上一点,且MA=MB,求点M的坐标.
查看答案
如图所示,在平面直角坐标系中,过坐标原点O的圆M分别交x轴、y轴于点A(6,0)、B(0,-8).
(1)求直线AB的解析式;
(2)若有一条抛物线的对称轴平行于y轴且经过M点,顶点C在圆M上,开口向下,且经过点B,求此抛物线的解析式;
(3)设(2)中的抛物线与x轴交于D(x1,y1)、E(x2,y2)两点,且x1<x2,在抛物线上是否存在点P,使△PDE的面积是△ABC面积的manfen5.com 满分网?若存在,求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.