在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,
).
(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;
(Ⅱ)求过A、B、C三点的抛物线Q的解析式;
(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图所示,边长为1的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕点O顺时针旋转30°,使点A落在抛物线y=ax
2(a<0)的图象上.
(1)求抛物线y=ax
2的函数关系式;
(2)正方形OABC继续按顺时针旋转多少度时,点A再次落在抛物线y=ax
2的图象上并求这个点的坐标.
(参考数据:sin30°=
,cos30°=
,tan30°=
.)
查看答案
附加题:如图1,菱形纸片ABCD中,AB=1,∠B=60°,将纸片翻折(如图2),使D点落在AD所在直线上,并可在直线AD上运动,折痕为EF.当
<DE<1时,设AB与DC相交于点G(如图).
(1)线段AD与DG相等吗?△ADG与△BCG的面积之和是否随着DE的变化而变化?为什么?
(2)设AD=x,重叠部分(图3中阴影部分)的面积为y,求出y与x之间的函数关系式,并写出自变量x的取值范围以及面积y的取值范围.
查看答案
附加题:若抛物线y=ax
2+bx+c(a<0)经过点C(2,3),与x轴交于点M、N,且∠MCN=90°,求a的值.
查看答案
如图,抛物线y=-x
2+(m+2)x-3(m-1)交x轴于点A、B(A在B的右边),直线y=(m+1)x-3经过点A.若m<1.
(1)求抛物线和直线的解析式;
(2)直线y=kx(k<0)交直线y=(m+1)x-3于点P,交抛物线y=-x
2+(m+2)x-3(m-1)于点M,过M点作x轴垂线,垂足为D,交直线y=(m+1)x-3于点N.问:△PMN能否为等腰三角形?若能,求k的值;若不能,请说明理由.
查看答案
已知A
1、A
2、A
3是抛物线y=
x
2上的三点,A
1B
1、A
2B
2、A
3B
3分别垂直于x轴,垂足为B
1、B
2、B
3,直线A
2B
2交线段A
1A
3于点C.
(1)如图,若A
1、A
2、A
3三点的横坐标依次为1,2,3,求线段CA
2的长;
(2)如图,若将抛物线y=
x
2改为抛物线y=
x
2-x+1,A
1、A
2、A
3三点的横坐标为连续整数,其他条件不变,求线段CA
2的长;
(3)若将抛物线y=
x
2改为抛物线y=ax
2+bx+c,A
1、A
2、A
3三点的横坐标为连续整数,其他条件不变,请猜想线段CA
2的长(用a、b、c表示,并直接写出答案).
查看答案