已知:在平面直角坐标系xOy中,一次函数y=kx-4k的图象与x轴交于点A,抛物线y=ax
2+bx+c经过O、A两点.
(1)试用含a的代数式表示b;
(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;
(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=
∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,抛物线y=-
x
2+(6-
)x+m-3与x轴交于A(x
1,0)、B(x
2,0)两点(x
1<x
2),交y轴于C点,且x
1+x
2=0.
(1)求抛物线的解析式,并写出顶点坐标及对称轴方程.
(2)在抛物线上是否存在一点P使△PBC≌△OBC?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,
).
(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;
(Ⅱ)求过A、B、C三点的抛物线Q的解析式;
(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.
查看答案
如图所示,边长为1的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕点O顺时针旋转30°,使点A落在抛物线y=ax
2(a<0)的图象上.
(1)求抛物线y=ax
2的函数关系式;
(2)正方形OABC继续按顺时针旋转多少度时,点A再次落在抛物线y=ax
2的图象上并求这个点的坐标.
(参考数据:sin30°=
,cos30°=
,tan30°=
.)
查看答案
附加题:如图1,菱形纸片ABCD中,AB=1,∠B=60°,将纸片翻折(如图2),使D点落在AD所在直线上,并可在直线AD上运动,折痕为EF.当
<DE<1时,设AB与DC相交于点G(如图).
(1)线段AD与DG相等吗?△ADG与△BCG的面积之和是否随着DE的变化而变化?为什么?
(2)设AD=x,重叠部分(图3中阴影部分)的面积为y,求出y与x之间的函数关系式,并写出自变量x的取值范围以及面积y的取值范围.
查看答案
附加题:若抛物线y=ax
2+bx+c(a<0)经过点C(2,3),与x轴交于点M、N,且∠MCN=90°,求a的值.
查看答案