满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10...

如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△PEQ=manfen5.com 满分网S△BCD?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.

manfen5.com 满分网
(1)若要PE∥AB,则应有,故用t表示DE和DP后,代入上式求得t的值; (2)过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N.由题意知,四边形CDEF是平行四边形,可证得△DEQ∽△BCD,得到,求得EQ的值,再由△PNQ∽△BMD,得到,求得PN的值,利用S△PEQ=EQ•PN得到y与t之间的函数关系式; (3)利用S△PEQ=S△BCD建立方程,求得t的值; (4)易得△PDE≌△FBP,故有S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD,即五边形的面积不变. 【解析】 (1)当PE∥AB时, ∴. 而DE=t,DP=10-t, ∴, ∴, ∴当(s),PE∥AB. (2)∵线段EF由DC出发沿DA方向匀速运动, ∴EF平行且等于CD, ∴四边形CDEF是平行四边形. ∴∠DEQ=∠C,∠DQE=∠BDC. ∵BC=BD=10, ∴△DEQ∽△BCD. ∴. . ∴. 过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N, ∵BC=BD,BM⊥CD,CD=4cm, ∴CM=CD=2cm, ∴cm, ∵EF∥CD, ∴∠BQF=∠BDC,∠BFG=∠BCD, 又∵BD=BC, ∴∠BDC=∠BCD, ∴∠BQF=∠BFG, ∵ED∥BC, ∴∠DEQ=∠QFB, 又∵∠EQD=∠BQF, ∴∠DEQ=∠DQE, ∴DE=DQ, ∴ED=DQ=BP=t, ∴PQ=10-2t. 又∵△PNQ∽△BMD, ∴. ∴. ∴. ∴S△PEQ=EQ•PN=××. (3)S△BCD=CD•BM=×4×4=8, 若S△PEQ=S△BCD, 则有-t2+t=×8, 解得t1=1,t2=4. (4)在△PDE和△FBP中, ∵DE=BP=t,PD=BF=10-t,∠PDE=∠FBP, ∴△PDE≌△FBP(SAS). ∴S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD=8. ∴在运动过程中,五边形PFCDE的面积不变.
复制答案
考点分析:
相关试题推荐
已知一次函数y1=x,二次函数y2=manfen5.com 满分网x2+manfen5.com 满分网
(1)根据表中给出的x的值,填写表中空白处的值;
manfen5.com 满分网
(2)观察上述表格中的数据,对于x的同一个值,判断y1和y2的大小关系.并证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1和y2的大小关系仍然成立;
(3)若把y=x换成与它平行的直线y=x+k(k为任意非零实数),请进一步探索:当k满足什么条件时,(2)中的结论仍然成立?当k满足什么条件时,(2)中的结论不能对任意的实数x都成立?并确定使(2)中的结论不成立的x的范围.
manfen5.com 满分网
查看答案
已知:在平面直角坐标系xOy中,一次函数y=kx-4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点.
(1)试用含a的代数式表示b;
(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;
(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=manfen5.com 满分网∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
如图,抛物线y=-manfen5.com 满分网x2+(6-manfen5.com 满分网)x+m-3与x轴交于A(x1,0)、B(x2,0)两点(x1<x2),交y轴于C点,且x1+x2=0.
(1)求抛物线的解析式,并写出顶点坐标及对称轴方程.
(2)在抛物线上是否存在一点P使△PBC≌△OBC?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,manfen5.com 满分网).
(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;
(Ⅱ)求过A、B、C三点的抛物线Q的解析式;
(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.
查看答案
如图所示,边长为1的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕点O顺时针旋转30°,使点A落在抛物线y=ax2(a<0)的图象上.
(1)求抛物线y=ax2的函数关系式;
(2)正方形OABC继续按顺时针旋转多少度时,点A再次落在抛物线y=ax2的图象上并求这个点的坐标.
(参考数据:sin30°=manfen5.com 满分网,cos30°=manfen5.com 满分网,tan30°=manfen5.com 满分网.)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.