满分5 > 初中数学试题 >

如图,在菱形ABCD中,∠A=60°,AB=4,E是边AB上一动点,过点E作EF...

manfen5.com 满分网如图,在菱形ABCD中,∠A=60°,AB=4,E是边AB上一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M.
(1)请判断△DMF的形状,并说明理由.
(2)设EB=x,△DMF的面积为y,求y与x之间的函数关系式.并写出x的取值范围.
(1)△DMF是等腰三角形.主要利用菱形ABCD中,∠A=60这个条件得到∠E、∠DMF的度数来判断; (2)不能直接表示△DMF的面积,采用面积分割法,用△AEF、△BEM来表示它. 【解析】 (1)△DMF是等腰三角形.理由如下:(2分) ∵四边形ABCD是菱形 ∴AB=AD, ∵∠A=60°, ∴∠ABD=60°, ∵EF⊥AB, ∴∠F=30°,∠DMF=∠EMB=30°, ∴∠F=∠DMF, ∴DM=DF, ∴△DMF是等腰三角形. (2)EB=x,则AE=4-x,由tan60°=,则EF=(4-x),EN=2, ∴NF=EF-EN=(2-x),FM=2(2-x). ∵MN=NF=(2-x), ∴DN=MNtan30°=2-x, ∴y=FM•DN=(2-x)×2(2-x)=(2-x)2,(0≤x<2).
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△PEQ=manfen5.com 满分网S△BCD?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.

manfen5.com 满分网 查看答案
已知一次函数y1=x,二次函数y2=manfen5.com 满分网x2+manfen5.com 满分网
(1)根据表中给出的x的值,填写表中空白处的值;
manfen5.com 满分网
(2)观察上述表格中的数据,对于x的同一个值,判断y1和y2的大小关系.并证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1和y2的大小关系仍然成立;
(3)若把y=x换成与它平行的直线y=x+k(k为任意非零实数),请进一步探索:当k满足什么条件时,(2)中的结论仍然成立?当k满足什么条件时,(2)中的结论不能对任意的实数x都成立?并确定使(2)中的结论不成立的x的范围.
manfen5.com 满分网
查看答案
已知:在平面直角坐标系xOy中,一次函数y=kx-4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点.
(1)试用含a的代数式表示b;
(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;
(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=manfen5.com 满分网∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
如图,抛物线y=-manfen5.com 满分网x2+(6-manfen5.com 满分网)x+m-3与x轴交于A(x1,0)、B(x2,0)两点(x1<x2),交y轴于C点,且x1+x2=0.
(1)求抛物线的解析式,并写出顶点坐标及对称轴方程.
(2)在抛物线上是否存在一点P使△PBC≌△OBC?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,manfen5.com 满分网).
(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;
(Ⅱ)求过A、B、C三点的抛物线Q的解析式;
(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.