满分5 > 初中数学试题 >

如图1,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°...

如图1,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°.
(1)如图2,动点P、Q同时以每秒1cm的速度从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到点C停止,设P、Q同时从点B出发t秒时,△PBQ的面积为y1(cm2),求y1(cm2)关于t(秒)的函数关系式;
(2)如图3,动点P以每秒1cm的速度从点B出发沿BA运动,点E在线段CD上随之运动,且PC=PE.设点P从点B出发t秒时,四边形PADE的面积为y2(cm2),求y2(cm2)关于t(秒)的函数关系式,并写出自变量t的取值范围.
manfen5.com 满分网
(1)本题的关键是看三角形BPQ中,BQ边上的高的值,分三种情况进行讨论: ①当P在BA上运动时,过P作PN⊥BC于N,过A作AM⊥BC于M,那么AM的值不难求出,可在相似三角形BPN和BAM中,表示出PN的长. ②当P在AD上运动时,高PN=DC. ③当P在DC上运动时,高PC=BA+AD+DC-t. 然后根据三角形的面积公式即可求出y1,t的函数关系式. (2)由于四边形APED不是规则的四边形,因此其面积可用梯形ABCD的面积-三角形BPC的面积-三角形CPE的面积来求.关键还是求出三角形BPC和CPE的高,过P分别作PF⊥CD于F,PH⊥BC于H,PH=CF=CE,而PF的长可用BC-BH来得出,由此可得出关于y2与t的函数关系式. 【解析】 (1)过点A作AM⊥BC于M,如图1,则AM=6,BM=8, ∴AD=MC=2. 过点P作PN⊥BC于N,则△PNB∽△AMB, ∴. ∴. ∴. ①当点P在BA上运动时, y1=BQ•NP=t•t=t2; ②当点P在AD上运动时,BQ=BC=10,PN=DC=6, y1=BQ•NP=×10×6=30; ③当点P在DC上运动时, y1=BQ•CP=×10(10+2+6-t)=-5t+90. (2)过点P作PF⊥CD于F,PH⊥BC于H,如图2, ∵∠BCD=90°, ∴四边形PHCF是矩形, ∴FC=EF=PH=t, 在Rt△BHP中,BH===t, ∴PF=BC-HB=10-. ∴y2=S梯形ABCD-S△BPC-S△PEC=(2+10)×6-×10×t-×t(10-t) =t2-9t+36 当CE=CD时,t=6, ∴t=5. ∴自变量t的取值范围是0≤t≤5.
复制答案
考点分析:
相关试题推荐
如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.
(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)P是MG的中点,请直接写出点P的运动路线的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在菱形ABCD中,∠A=60°,AB=4,E是边AB上一动点,过点E作EF⊥AB交AD的延长线于点F,交BD于点M.
(1)请判断△DMF的形状,并说明理由.
(2)设EB=x,△DMF的面积为y,求y与x之间的函数关系式.并写出x的取值范围.
查看答案
如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△PEQ=manfen5.com 满分网S△BCD?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由.

manfen5.com 满分网 查看答案
已知一次函数y1=x,二次函数y2=manfen5.com 满分网x2+manfen5.com 满分网
(1)根据表中给出的x的值,填写表中空白处的值;
manfen5.com 满分网
(2)观察上述表格中的数据,对于x的同一个值,判断y1和y2的大小关系.并证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1和y2的大小关系仍然成立;
(3)若把y=x换成与它平行的直线y=x+k(k为任意非零实数),请进一步探索:当k满足什么条件时,(2)中的结论仍然成立?当k满足什么条件时,(2)中的结论不能对任意的实数x都成立?并确定使(2)中的结论不成立的x的范围.
manfen5.com 满分网
查看答案
已知:在平面直角坐标系xOy中,一次函数y=kx-4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点.
(1)试用含a的代数式表示b;
(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;
(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=manfen5.com 满分网∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.