满分5 > 初中数学试题 >

如图,直线y=-3x-3分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向...

manfen5.com 满分网如图,直线y=-3x-3分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△DOC,抛物线y=ax2+bx+c经过A、B、C三点.
(1)填空:A(____________)、B(____________)、C(____________);
(2)求抛物线的函数关系式;
(3)E为抛物线的顶点,在线段DE上是否存在点P,使得以C、D、P为顶点的三角形与△DOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
(1)根据直线AB的解析式,可求出A、B的坐标,由于△DOC是由△AOB旋转而得,根据旋转的性质知:OC=OB,由此可得到OC的长,即可求得C点的坐标; (2)将A、B、C的坐标代入抛物线的解析式中,即可求出待定系数的值; (3)易求得D、E的坐标,进而可求出CD、DE的长;过E作EF⊥y轴于F,通过证△COD∽△DFE,可得到∠CDE=90°;那么△COD和△CDP中,∠COD、∠CDP都是直角,对应相等,因此本题要分成两种情况讨论: ①OC:OD=CD:DP=3:1,此时CD=3DP,由此可求出DP的长;过P作PG⊥y轴于G,根据∠PDG的正切值结合勾股定理,即可求出DG、PG的长,由此可求得点P的坐标; ②OC:OD=DP:CD=3:1,此时DP=3CD,解法同①; 综合上述情况即可求出P点的坐标,需注意的是P点为线段DE上的点,因此DP≤DE,根据这个条件可将不合题意的解舍去. 【解析】 (1)直线y=-3x-3中, x=0,则y=-3;y=0,则x=-1; ∴A(-1,0),B(0,-3); 根据旋转的性质知:OC=OB=3,即C(3,0); ∴A(-1,0),B(0,-3),C(3,0);(3分) (2)∵抛物线y=ax2+bx+c经过B点,∴c=-3; 又∵抛物线经过A,C两点, ∴,解得;(5分) ∴y=x2-2x-3;(6分) (3)过点E作EF⊥y轴垂足为点F; 由(2)得y=x2-2x-3=(x-1)2-4 ∴E(1,-4). ∵tan∠EDF=,tan∠DCO=; ∴∠EDF=∠DCO(7分) ∵∠DCO+∠ODC=90°, ∴∠EDF+∠ODC=90°; ∴∠EDC=90°, ∴∠EDC=∠DOC;(8分) ①当=时,△ODC∽△DPC, 则=, ∴DP=(9分) 过点P作PG⊥y轴,垂足为点G; ∵tan∠EDF==, ∴设PG=x,则DG=3x 在Rt△DGP中,DG2+PG2=DP2. ∴9x2+x2=, ∴x1=,x2=-(不合题意,舍去)(10分) 又∵OG=DO+DG=1+1=2, ∴P(,-2);(11分) ②当=时,△ODC∽△DCP,则=, ∴DP=3; ∵DE==, ∴DP=3(不合题意,舍去)(13分) 综上所述,存在点P,使得以C、D、P为顶点的三角形与△DOC相似,此时点P的坐标为P(,-2).(14分)
复制答案
考点分析:
相关试题推荐
如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题:
manfen5.com 满分网
(1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由;
(3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少.
查看答案
如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原.
(1)当x=0时,折痕EF的长为______;当点E与点A重合时,折痕EF的长为______
查看答案
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

manfen5.com 满分网 查看答案
如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30度.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.
(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围.
(2)当五边形BCDNM面积最小时,请判断△AMN的形状.
manfen5.com 满分网
查看答案
如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.
(1)当t=4时,求S的值;
(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.