满分5 > 初中数学试题 >

如图,直角梯形ABCD和正方形EFGC的边BC、CG在同一条直线上,AD∥BC,...

如图,直角梯形ABCD和正方形EFGC的边BC、CG在同一条直线上,AD∥BC,AB⊥BC于点B,AD=4,AB=6,BC=8,直角梯形ABCD的面积与正方形EFGC的面积相等,将直角梯形ABCD沿BG向右平行移动,当点C与点G重合时停止移动.设梯形与正方形重叠部分的面积为S.
(1)求正方形的边长;
(2)设直角梯形ABCD的顶点C向右移动的距离为x,求S与x的函数关系式;
(3)当直角梯形ABCD向右移动时,它与正方形EFGC的重叠部分面积S能否等于直角梯形ABCD面积的一半?若能,请求出此时运动的距离x的值;若不能,请说明理由.

manfen5.com 满分网
(1)可通过求出梯形的面积即正方形的面积来求正方形的边长. (2)由(1)的结果可看出AD,EF也在一条直线上,那么本题要分两种情况进行讨论. ①当D在E点上或E点左侧时,即当0<x≤4时,重叠部分是个三角形,如果设DN与CE的交点为M,那么高就是CM底边就是CN,CN=x,CM可以通过构建相似三角形来求,过D作DH⊥BC于H,那么根据三角形CMN和HDN相似即可求出CM,也就能得出关于x,y的函数关系式. ②当D在E点右侧时,即当4<x≤6时,重叠部分是直角梯形,而DE=CG-(8-x),然后根据梯形的面积公式即可得出x,y的函数关系式. (3)先求出梯形的面积,然后将其一半的值代入(2)的函数式中,求出符合题意的解即可. 【解析】 (1)S正方形EFGC=S梯形ABCD=(4+8)×6=36. 设正方形边长为x. ∴x2=36, ∴x1=6,x2=-6(不合题意,舍去). ∴正方形的边长为6. (2)①当0<x≤4时,重叠部分为△MCN. 过D作DH⊥BC于H,可得△MCN∽△DHN, ∴=, ∴=, ∴MC=x, ∴S=CN•CM=•x•x. ∴S=x2. ②当4<x≤6时,重叠部分为直角梯形ECND. S=[4-(8-x)+x]×6, ∴S=6x-12. (3)存在. ∵S梯形ABCD=36,当0<x≤4时,S=x2, ∴×36=x2,x=2(取正值)>4 ∴此时x值不存在. 当4<x≤6时,S=6x-12, ∴×36=6x-12, ∴x=5. 综上所述,当x=5时,重叠部分面积S等于直角梯形的一半.
复制答案
考点分析:
相关试题推荐
如图,△ABC中AB=AC,BC=6,点D位BC中点,连接AD,AD=4,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.
(1)试判断四边形ADCE的形状并说明理由.
(2)将四边形ADCE沿CB以每秒1个单位长度的速度向左平移,设移动时间为t(0≤t≤6)秒,平移后的四边形A’D’C’E’与△ABC重叠部分的面积为S,求S关于t的函数表达式,并写出相应的t的取值范围.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,直线y=-3x-3分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△DOC,抛物线y=ax2+bx+c经过A、B、C三点.
(1)填空:A(____________)、B(____________)、C(____________);
(2)求抛物线的函数关系式;
(3)E为抛物线的顶点,在线段DE上是否存在点P,使得以C、D、P为顶点的三角形与△DOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案
如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题:
manfen5.com 满分网
(1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由;
(3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少.
查看答案
如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原.
(1)当x=0时,折痕EF的长为______;当点E与点A重合时,折痕EF的长为______
查看答案
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.