满分5 > 初中数学试题 >

已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将...

已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.

manfen5.com 满分网
(Ⅰ)因为折叠后点B与点A重合,那么BC=AC,可先设出C点的坐标,然后表示出BC,AC,在直角三角形OCA中,根据勾股定理即可求出C点的纵坐标,也就求出了C点的坐标; (Ⅱ)方法同(Ⅰ)用OC表示出BC,B′C然后在直角三角形OB′C中根据勾股定理得出x,y的关系式.由于B′在OA上,因此有0≤x≤2,由此可求出y的取值范围; (Ⅲ)根据(Ⅰ)(Ⅱ)的思路,应该先得出OB″,OC的关系,知道OA,OB的值,那么可以通过证Rt△COB″∽Rt△BOA来实现.∠B″CO和∠CB″D是平行线B″D,OB的内错角,又因为∠OBA=∠CB″D,因此∠B″CO=∠OBA,即CB″∥BA,由此可得出两三角形相似,得出OC,OB″的比例关系,然后根据(1)(2)的思路,在直角三角形OB″C中求出OC的值,也就求出C点的坐标了. 【解析】 (Ⅰ)如图①,折叠后点B与点A重合,则△ACD≌△BCD. 设点C的坐标为(0,m)(m>0),则BC=OB-OC=4-m. ∴AC=BC=4-m. 在Rt△AOC中,由勾股定理,AC2=OC2+OA2, 即(4-m)2=m2+22,解得m=. ∴点C的坐标为(0,); (Ⅱ)如图②,折叠后点B落在OA边上的点为B′, ∴△B′CD≌△BCD. ∵OB′=x,OC=y, ∴B'C=BC=OB-OC=4-y, 在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2. ∴(4-y)2=y2+x2, 即y=-x2+2. 由点B′在边OA上,有0≤x≤2, ∴解析式y=-x2+2(0≤x≤2)为所求. ∵当0≤x≤2时,y随x的增大而减小, ∴y的取值范围为≤y≤2; (Ⅲ)如图③,折叠后点B落在OA边上的点为B″,且B″D∥OC. ∴∠OCB″=∠CB″D. 又∵∠CBD=∠CB″D, ∴∠OCB″=∠CBD, ∵CB″∥BA. ∴Rt△COB″∽Rt△BOA. ∴, ∴OC=2OB″. 在Rt△B″OC中, 设OB″=x(x>0),则OC=2x. 由(Ⅱ)的结论,得2x=-x2+2, 解得x=-8±4. ∵x>0, ∴x=-8+4. ∴点C的坐标为(0,8-16).
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(manfen5.com 满分网),且△AOB∽△BOC.
(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,直角梯形ABCD和正方形EFGC的边BC、CG在同一条直线上,AD∥BC,AB⊥BC于点B,AD=4,AB=6,BC=8,直角梯形ABCD的面积与正方形EFGC的面积相等,将直角梯形ABCD沿BG向右平行移动,当点C与点G重合时停止移动.设梯形与正方形重叠部分的面积为S.
(1)求正方形的边长;
(2)设直角梯形ABCD的顶点C向右移动的距离为x,求S与x的函数关系式;
(3)当直角梯形ABCD向右移动时,它与正方形EFGC的重叠部分面积S能否等于直角梯形ABCD面积的一半?若能,请求出此时运动的距离x的值;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,△ABC中AB=AC,BC=6,点D位BC中点,连接AD,AD=4,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.
(1)试判断四边形ADCE的形状并说明理由.
(2)将四边形ADCE沿CB以每秒1个单位长度的速度向左平移,设移动时间为t(0≤t≤6)秒,平移后的四边形A’D’C’E’与△ABC重叠部分的面积为S,求S关于t的函数表达式,并写出相应的t的取值范围.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,直线y=-3x-3分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△DOC,抛物线y=ax2+bx+c经过A、B、C三点.
(1)填空:A(____________)、B(____________)、C(____________);
(2)求抛物线的函数关系式;
(3)E为抛物线的顶点,在线段DE上是否存在点P,使得以C、D、P为顶点的三角形与△DOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案
如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题:
manfen5.com 满分网
(1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由;
(3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.