满分5 > 初中数学试题 >

函数y=3x2+x-4是( ) A.一次函数 B.二次函数 C.正比例函数 D....

函数y=3x2+x-4是( )
A.一次函数
B.二次函数
C.正比例函数
D.反比例函数
判断一个函数是二次函数需要注意三点: (1)整理后,函数表达式是整式; (2)自变量的最高次数为2; (3)二次项系数不为0,尤其是含有字母系数的函数,应特别注意已知条件中给出字母系数是否是常数. 【解析】 因为二次项的系数是3≠0 所以是二次函数.故选B.
复制答案
考点分析:
相关试题推荐
如图,AB、CD是竖立在公路两侧,且架设了跨过公路的高压电线的电杆,AB=CD=16米.现在点A处观测电杆CD的视角为19°42′,视线AD与AB的夹角为59度.以点B为坐标原点,向右的水平方向为x轴的正方向,建立平面直角坐标系.
(1)求电杆AB、CD之间的距离和点D的坐标;
(2)在今年年初的冰雪灾害中,高压电线由于结冰下垂近似成抛物线y=manfen5.com 满分网x2+bx(b为常数).在通电情况,高压电线周围12米内为非安全区域.请问3.2米高的车辆从高压电线下方通过时,是否有危险,并说明理由.manfen5.com 满分网
查看答案
如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,2manfen5.com 满分网),∠BCO=60°,OH⊥BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.
(1)求OH的长;
(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;
(3)设PQ与OB交于点M.
①当△OPM为等腰三角形时,求(2)中S的值. 
②探究线段OM长度的最大值是多少,直接写出结论.

manfen5.com 满分网 查看答案
如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式;
(3)当:△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网 查看答案
阅读理【解析】
如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.manfen5.com 满分网
查看答案
已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.