满分5 > 初中数学试题 >

抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点. (1)求出m的值并画...

抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?

manfen5.com 满分网
(1)直接把点(0,3)代入抛物线解析式求m,确定抛物线解析式,根据解析式确定抛物线的顶点坐标,对称轴,开口方向,与x轴及y轴的交点,画出图象. (2)、(3)、(4)可以通过(1)的图象及计算得到. 【解析】 (1)由抛物线y=-x2+(m-1)x+m与y轴交于(0,3)得:m=3. ∴抛物线为y=-x2+2x+3=-(x-1)2+4. 列表得: X -1 1 2 3 y 3 4 3 图象如右. (2)由-x2+2x+3=0,得:x1=-1,x2=3. ∴抛物线与x轴的交点为(-1,0),(3,0). ∵y=-x2+2x+3=-(x-1)2+4 ∴抛物线顶点坐标为(1,4). (3)由图象可知: 当-1<x<3时,抛物线在x轴上方. (4)由图象可知: 当x>1时,y的值随x值的增大而减小.
复制答案
考点分析:
相关试题推荐
阅读以下材料:
对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=manfen5.com 满分网;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解决下列问题:
(1)填空:min{sin30°,cos45°,tan30°}=______,如果min{2,2x+2,4-2x}=2,则x的取值范围为______≤x≤______
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么______(填a,b,c的大小关系)”,
证明你发现的结论.
③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=______
(3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为______

manfen5.com 满分网 查看答案
二次函数y=x2-4x+5的最小值为    查看答案
二次函数y=(x-1)2+4的最小值是    查看答案
已知二次函数y=(x-1)2+(x-3)2,当x=    时,函数达到最小值. 查看答案
函数y=9-4x2,当x=    时有最大值    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.