满分5 > 初中数学试题 >

由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产...

由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金.他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价y(万元/台)与月次x(1≤x≤12且为整数)满足关系式:y=manfen5.com 满分网,一年后发现实际每月的销售量p(台)与月次x之间存在如图所示的变化趋势.
(1)直接写出实际每月的销售量p(台)与月次x之间的函数关系式;
(2)求前三个月中每月的实际销售利润w(万元)与月次x之间的函数关系式;
(3)试判断全年哪一个月的售价最高,并指出最高售价;
(4)请通过计算说明他这一年是否完成了年初计划的销售量.

manfen5.com 满分网
(1)要根据自变量的不同取值范围,运用待定系数法分段计算出p与x的函数关系式; (2)可根据实际销售利润=单件的利润×销售的数量,然后根据题目中给出的售价与月次的函数式以及(1)中销售量与月次的关系式,得出实际销售利润与月次的函数关系式; (3)要根据自变量的不同的取值范围分别进行讨论,然后找出最高售价; (4)可根据“完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元”作为判断依据来计算出它能否完成年初的销售计划. 【解析】 (1)由题意得: ; (2)w=(-0.05x+0.25-0.1)(-5x+40) =(x-3)(x-8) = 即w与x间的函数关系式w=; (3)①当1≤x<4时,y=-0.05x+0.25中y随x的增大而减小 ∴x=1时,y最大=0.2 ②当4≤x≤6时,y=0.1万元,保持不变 ③当6<x≤12时,y=0.015x+0.01中y随x的增大而增大 ∴x=12时,y最大=0.015×12+0.01=0.19 综合得:全年1月份售价最高,最高为0.2万元/台; (4)设全年计划销售量为a台,则: 34≤0.1a+5≤40 解得:290≤a≤350 ∵全年的实际销售量为:35+30+25+20+22+24+26+28+30+32+34+36=342(台)>290台 ∴这一年他完成了年初计划的销售量.
复制答案
考点分析:
相关试题推荐
如图,等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB的长为x米.
(1)请求出底边BC的长(用含x的代数式表示);
(2)若∠BAD=60°,该花圃的面积为S米2
①求S与x之间的函数关系式(要指出自变量x的取值范围),并求当S=93manfen5.com 满分网时x的值;
②如果墙长为24米,试问S有最大值还是最小值?这个值是多少?

manfen5.com 满分网 查看答案
为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
查看答案
种植能手小李的实验田可种植A种作物或B种作物(A、B两种作物不能同时种植),原来的种植情况如表.通过参加农业科技培训,小李提高了种植技术.现准备在原有的基础上增种,以提高总产量.但根据科学种植的经验,每增种1棵A种或B种作物,都会导致单棵作物平均产量减少0.2千克,而且每种作物的增种数量都不能超过原有数量的80%.设A种作物增种m棵,总产量为yA千克;B种作物增种n棵,总产量为yB千克.
种植品种
数量
A种作物B中作物
原种植量(棵)5060
原产量(千克/棵)3026
(1)A种作物增种m棵后,单棵平均产量为______千克;B种作物增种n棵后,单棵平均产量为______千克;
(2)求yA与m之间的函数关系式及yB与n之间的函数关系式;
(3)求提高种植技术后,小李增种何种作物可获得最大总产量?最大总产量是多少千克?
查看答案
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
查看答案
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.