满分5 > 初中数学试题 >

如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运...

如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点C距守门员多少米?(取4manfen5.com 满分网=7)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取manfen5.com 满分网=5)

manfen5.com 满分网
(1)依题意代入x的值可得抛物线的表达式. (2)令y=0可求出x的两个值,再按实际情况筛选. (3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得 2=-(x-6)2解得x的值即可知道CD、BD. 【解析】 (1)(3分)如图,设第一次落地时, 抛物线的表达式为y=a(x-6)2+4.(1分) 由已知:当x=0时y=1, 即1=36a+4, ∴a=-(2分) ∴表达式为y=-(x-6)2+4,(3分) (或y=-x2+x+1). (2)令y=0,-(x-6)2+4=0, ∴(x-6)2=48. x1=4+6≈13,x2=-4+6<0(舍去).(2分) ∴足球第一次落地距守门员约13米.(3分) (3)解法一:如图,第二次足球弹出后的距离为CD 根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位) ∴2=-(x-6)2+4解得x1=6-2,x2=6+2(2分) ∴CD=|x1-x2|=4≈10(3分) ∴BD=13-6+10=17(米).(4分) 解法二:令-(x-6)2+4=0 解得x1=6-4(舍),x2=6+4≈13.∴点C坐标为(13,0).(1分) 设抛物线CND为y=-(x-k)2+2(2分) 将C点坐标代入得: -(13-k)2+2=0 解得:k1=13-2(舍去),k2=6+4+2≈6+7+5=18(3分) 令y=0,0=-(x-18)2+2,x1=18-2(舍去),x2=18+2≈23, ∴BD=23-6=17(米). 解法三:由解法二知,k=18, 所以CD=2(18-13)=10, 所以BD=(13-6)+10=17. 答:他应再向前跑17米.(4分)
复制答案
考点分析:
相关试题推荐
为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
查看答案
如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少?

manfen5.com 满分网 查看答案
某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.
设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的函数关系式;
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?
查看答案
小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大,最大面积是多少?
查看答案
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y=manfen5.com 满分网x2+5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p,p(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售x吨时,P=-manfen5.com 满分网x+14,请你用含x的代数式表示甲地当年的年销售额,并求年利润W(万元)与x之间的函数关系式;
(2)成果表明,在乙地生产并销售x吨时,P=-manfen5.com 满分网+n(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.