满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线y=-x-与x轴交于点A,与y轴交于点C,抛物线y...

如图,在平面直角坐标系中,直线y=-manfen5.com 满分网x-manfen5.com 满分网与x轴交于点A,与y轴交于点C,抛物线y=ax2-manfen5.com 满分网x+c(a≠0)经过A,B,C三点.
(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;
(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;
(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)抛物线解析式中有两个待定系数a,c,根据直线AC解析式求点A、C坐标,代入抛物线解析式即可; (2)分析不难发现,△ABP的直角顶点只可能是P,根据已知条件可证AC2+BC2=AB2,故点C满足题意,根据抛物线的对称性,点C关于抛物线对称轴的对称点也符合题意; (3)由于B,F是定点,BF的长一定,实际上就是求BM+FM最小,找出点B关于直线AC的对称点B',连接B'F,交AC于点M,点M即为所求,由(2)可知,BC⊥AC,延长BC到B',使BC=B'C,利用中位线的性质可得B'的坐标,从而可求直线B'F的解析式,再与直线AC的解析式联立,可求M点坐标. 【解析】 (1)∵直线y=-x-与x轴交于点A,与y轴交于点C ∴点A(-1,0),C(0,-) ∵点A,C都在抛物线上, ∴ ∴ ∴抛物线的解析式为y=x2-x- ∴顶点F(1,-). (2)存在: p1(0,-),p2(2,-). (3)存在 理由: 解法一: 延长BC到点B′,使B′C=BC,连接B′F交直线AC于点M,则点M就是所求的点, ∵过点B′作B′H⊥AB于点H, ∵B点在抛物线y=x2-x-上, ∴B(3,0), 在Rt△BOC中,tan∠OBC= ∴∠OBC=30°,BC=2 在Rt△B′BH中,B′H=BB′=2 BH=B′H=6,∴OH=3, ∴B′(-3,-2). 设直线B′F的解析式为y=kx+b, ∴, 解得, ∴y=. , 解得, ∴M() ∴在直线AC上存在点M,使得△MBF的周长最小,此时M(). 解法二: 过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点,连接BH交AC于点M,则点M 即为所求. 过点F作FG⊥y轴于点G,则OB∥FG,BC∥FH, ∴∠BOC=∠FGH=90°,∠BCO=∠FHG ∴∠HFG=∠CBO 同方法一可求得B(3,0) 在Rt△BOC中,tan∠OBC= ∴∠OBC=30°,可求得GH=GC= ∴GF为线段CH的垂直平分线,可证得△CFH为等边三角形 ∴AC垂直平分FH 即点H为点F关于AC对称点, ∴H(0,-) 设直线BH的解析式为y=kx+b,由题意得,, 解得, ∴y=, , 解得, ∴M(), ∴在直线AC上存在点M,使得△MBF的周长最小,此时M().
复制答案
考点分析:
相关试题推荐
如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.

manfen5.com 满分网 查看答案
如图,抛物线y1=-ax2-ax+1经过点P(-manfen5.com 满分网manfen5.com 满分网),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

manfen5.com 满分网 查看答案
如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,manfen5.com 满分网),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度.折叠后,点O落在点O1,点C落在线段AB点C1处,并且DO1与DC1在同一直线上.
(1)求折痕AD所在直线的解析式;
(2)求经过三点O,C1,C的抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值.

manfen5.com 满分网 查看答案
如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,manfen5.com 满分网)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.