满分5 > 初中数学试题 >

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线...

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)可根据直线y=-2x-1求出B点的坐标,根据A、O关于直线x=2对称,可得出A点的坐标,已知了抛物线上三点坐标即可用待定系数法求出抛物线的解析式; (2)先求出C、B、E、D四点的坐标, ①根据C、B、E三点的坐标可求出CB,CE的长,判断它们是否相等即可; ②本题可通过构建全等三角形来求解,过B作BF⊥y轴于F,过E作EH⊥y轴于H,根据B、D、E三点坐标即可得出BF=EH,DF=DH,通过证两三角形全等即可得出BD=DE即D是BE中点的结论; (3)若PB=PE,则P点必在线段BE的垂直平分线上即直线CD上,可求出直线CD的解析式,联立抛物线即可求出P点的坐标. (1)【解析】 ∵点B(-2,m)在直线y=-2x-1上 ∴m=-2×(-2)-1=3 ∴B(-2,3) ∵抛物线经过原点O和点A,对称轴为x=2 ∴点A的坐标为(4,0) 设所求的抛物线对应函数关系式为y=a(x-0)(x-4) 将点B(-2,3)代入上式,得3=a(-2-0)(-2-4) ∴a= ∴所求的抛物线对应的函数关系式为y=x(x-4) 即y=x2-x; (2)证明:①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1)E(2,-5), 过点B作BG∥x轴,与y轴交于F、直线x=2交于G, 则BG⊥直线x=2,BG=4 在Rt△BGC中,BC= ∵CE=5, ∴CB=CE=5 ②过点E作EH∥x轴,交y轴于H, 则点H的坐标为H(0,-5) 又点F、D的坐标为F(0,3)、D(0,-1) ∴FD=DH=4,BF=EH=2,∠BFD=∠EHD=90° ∴△DFB≌△DHE(SAS) ∴BD=DE 即D是BE的中点; (3)【解析】 存在. 由于PB=PE,∴点P在直线CD上 ∴符合条件的点P是直线CD与该抛物线的交点 设直线CD对应的函数关系式为y=kx+b 将D(0,-1)C(2,0)代入,得, 解得k=,b=-1 ∴直线CD对应的函数关系式为y=x-1 ∵动点P的坐标为(x,x2-x) ∴x-1=x2-x 解得x1=3+,x2=3- ∴y1=,y2= ∴符合条件的点P的坐标为(3+,)或(3-,).
复制答案
考点分析:
相关试题推荐
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
manfen5.com 满分网
查看答案
如图所示,在平面直角坐标系中,⊙M经过原点O,且与x轴、y轴分别相交于A(-6,0),B(0,-8)两点.
(1)请求出直线AB的函数表达式;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数表达式;
(3)设(2)中的抛物线交x轴于D,E两点,在抛物线上是否存在点P,使得S△PDE=manfen5.com 满分网S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

manfen5.com 满分网 查看答案
如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?
manfen5.com 满分网
查看答案
如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.