满分5 > 初中数学试题 >

如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,...

如图,抛物线y=manfen5.com 满分网x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.
(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73,manfen5.com 满分网≈2.24)

manfen5.com 满分网
(1)由已知可得A(-3,0)、B(1,0),代入抛物线解析式,可求m,n值;(2)由已知的二次函数解析式可求P,C两点坐标,从而可求直线PC的解析式;(3)关键是求点A到直线PC的距离,再与圆的半径2.5进行比较;为此,过点A作AE⊥PC,垂足为E,由△COD∽△AED,求出两个三角形中相关线段长,利用相似比求AE; 【解析】 (1)由已知条件可知:抛物线y=x2+mx+n经过A(-3,0)、B(1,0)两点. ∴, 解得m=1,n=-. (2)∵y=x2+x-, ∴P(-1,-2),C. 设直线PC的解析式是y=kx+b,则, 解得k=,b=-, ∴直线PC的解析式是y=x-. (3)如图,过点A作AE⊥PC,垂足为E. 设直线PC与x轴交于点D,则点D的坐标为(3,0). 在Rt△OCD中, ∵OC=,OD=3, ∴. ∵OA=3,OD=3, ∴AD=6. ∵∠COD=∠AED=90°,∠CDO公用, ∴△COD∽△AED. ∴,即. ∴AE=≈2.688>2.5 ∴以点A为圆心、直径为5的圆与直线PC相离.
复制答案
考点分析:
相关试题推荐
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为manfen5.com 满分网.设⊙M与y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式;
(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知平行四边形ABCD的顶点A的坐标是(0,16),AB平行于x轴,B,C,D三点在抛物线y=manfen5.com 满分网x2上,DC交y轴于N点,一条直线OE与AB交于E点,与DC交于F点,如果E点的横坐标为a,四边形ADFE的面积为manfen5.com 满分网
(1)求出B,D两点的坐标;
(2)求a的值;
(3)作△ADN的内切圆⊙P,切点分别为M,K,H,求tan∠PFM的值.

manfen5.com 满分网 查看答案
实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是____________
manfen5.com 满分网
(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
manfen5.com 满分网
归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______
(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点manfen5.com 满分网manfen5.com 满分网,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.
查看答案
如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=manfen5.com 满分网x2+bx+c过点A和B,与y轴交于点C.
(1)求点C的坐标,并画出抛物线的大致图象;
(2)点Q(8,m)在抛物线y=manfen5.com 满分网x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.

manfen5.com 满分网 查看答案
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.